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This paper is dedicated to Professor D. S. Mitrinović

Abstract. Some recurrence formulas related to the differential operator δ =
θ ·D are considered. Some examples, including Kurepa’s function, are included.

1. Introduction

In the spring of 1971, I had an inspiriting talk with Professor D. Mitrinović
about Stirling numbers of the second kind. This article is a reflection on this
time and event.
The starting point of our consideration is the differential operator δ =

θ · D. As the most of our analysis is of combinatorial and arithmetical
nature, we shall put it in the frame of differential fields. Let us remind about
this notion. The language of the differential fields is the language of fields
augmented by a one-place function symbol D. The theory of differential
fields of characteristic zero is the theory of fields increased by two axioms
that relate to the derivative D:

D(x+ y) = Dx+Dy, D(xy) = xDy + yDx.

It is easy to see that Dx = 0 for all integers x, namely D1 = D(1 · 1) =
1D1 + 1D1, so D1 = 0. By the additivity of D, it follows Dx = 0 for
all integers x. So, every differential field is a structure of the form F =
(F,+, · ,D, 0, 1) satisfying the stated axioms. Let θ be an element of F. Now
we can introduce a new differential operator δ = θ ·D, i.e. by δ(x) = θ ·D(x),
x ∈ F .
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For notation in this paper, we use N = {0, 1, 2, . . . } to denote the set
of natural numbers, N

+ the set of positive integers, Z the set of integers,
while R denotes the set of real numbers, if not otherwise stated. The symbol
x(k) denotes the product x(x− 1) · · · (x− k + 1). As usual, if A denotes an
(algebraic) structure, then A denotes domain of this structure. If F is a field,
or commutative ring where applicable, then F[x1, x2, . . . , xn] denotes the
ring of all polynomials in variables x1, x2, . . . , xn, while F(x1, x2, . . . , xn)
denotes the field of rational expressions over F. Finally, by R we shall
denote the field of real rational functions in infinite number of variables
x0, x1, x2, . . . .

2. Operator δn

Our goal in this section is to study the power δn of the operator δ intro-
duced in the previous section. A lot of efforts were spent in studying of this
operator, for history see, for example, [1]. Let us denote by θ(i) the i-th de-
rivative Diθ. Then it is obvious that δn is a polynomial in θ, θ(1), . . . , θ(n−1)

and D, that is, we have:

(2.1) δn =
n∑

i=1

Pn
i (θ, θ

′, . . . , θ(n−1))Di,

where Pn
i (x0, x1, . . . , xn−1) ∈ Z[x0, x1, . . . , xn−1]. Therefore,

(2.2) δn =
n∑

i=1

P̄n
i D

i,

where P̄n
i = Pn

i (θ, θ
′, . . . , θ(n−1)).

Some basic properties of the polynomials Pn
i are:

a) The polynomial Pn
i depends only on the variables x0, x1, . . . , xn−i,

namely Pn
i ∈ Z[x0, x1, . . . , xn−i]. So P̄n

i = Pn
i (θ, θ

′, . . . , θ(n−i)).
b) Pn

i are homogeneous polynomials of degree n.
c) The variable x0 divides every polynomial Pn

i .
Further,

δn+1 = θ ·D
n∑

i=1

P̄n
i D

i = θ

( n∑
i=1

DP̄n
i ·Di +

n∑
i=1

P̄n
i D

i+1

)

= θ

(
DP̄n

1 D+
n∑

i=2

(P̄n
i−1 +DP̄

n
i )D

i + P̄n
nD

n+1

)
.
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Thus,

P̄n+1
1 = θDP̄n

1 = θ
n−1∑
i=0

∂Pn
1

∂xi
Dθ(i) = θ

n−1∑
i=0

∂Pn
1

∂xi
θ(i+1).

So,

(2.3a) Pn+1
1 = x0

n−1∑
i=0

∂Pn
1

∂xi
xi+1.

As P̄n+1
i = θ(P̄n

i−1 +DP̄
n
i ), 2 ≤ i ≤ n, we find in a similar way

(2.3b) Pn+1
i = x0

(
Pn

i−1 +
n−i∑
j=0

∂Pn
i

∂xj
xj+1

)

and
(2.3c) Pn+1

n+1 = x0P
n
n .

For example, noting that P 1
1 = x0, P

2
1 = x0x1, P

2
2 = x2

0, we compute

P 3
1 i = x0

1∑
j=1

∂P 1
j

∂xj
xj+1 = x0(x2

1 + x0x2) = x0x
2
1 + x2

0x2,

P 3
2 = x0

(
P 2

1 +
0∑

j=0

∂P 2
j

∂xj
xj+1

)
= x0(x0x1 + 2x0x1) = 3x2

0x1,

P 3
3 = x3

0.

Hence, the first few polynomials are:
P 1

1 = x0, P
2
1 = x0x1, P

2
2 = x2

0,

P 3
1 = x0x

2
1 + x2

0x2, P
3
2 = 3x

2
0x1, P

3
3 = x3

0,

P 4
1 = x0x

3
1 + 4x

2
0x1x2 + x3

0x3, P
4
2 = 7x

2
0x

2
1 + 4x

3
0x2, P

4
3 = 6x

3
0x1, P

4
4 = x4

0.

3. Operator δ for Dx=1

The most known operator δ is for θ such that D θ = 1 (in the case of the
field R[x] or R, θ consists of the variable x). This operator we shall call
Abelian, as Abel used it to compute the sum 1k + 2k + · · · + nk (cf. [6]).
As θ′ = 1, θ′′ = 0, . . . , in the evaluation of the formula (2.2) we may take
x1 = 1, and x2 = 0, x3 = 0, . . . , so Pn

i = σn
i x

i
0, where σn

i is an integer
sequence. Thus,

(3.1) δn =
n∑

i=1

σn
i x

i
0D

i, σ1
1 = 1, σn

n = 1.
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By (2.3b) we have

Pn+1
i = x0

(
Pn

i−1 +
∂Pn

i

∂x0

)
=

(
σn

i−1 + iσn
i

)
xn

0 .

Hence, the sequence σn
i satisfies the following recurrence formula:

(3.2) σn+1
i = σn

i−1 + iσn
i , σn

1 = 1, σn
n = 1,

i.e. σn
i = sn

i , where s
n
i are the Stirling numbers of the second kind. Thus,

taking x0 = x,

(3.3) δn =
n∑

i=1

sn
i x

iDi.

Let us denote by Sn
i the Stirling numbers of the second kind. As the matrices

||sn
i ||n×n and ||Sn

i ||n×n are mutually inverse, then we have for any sequences
〈an|n ∈ N

+〉 and 〈bn|n ∈ N
+〉 the following inversion formula:

(3.4) bn =
n∑

i=1

sn
i ai, n ∈ N

+ iff an =
n∑

i=1

Sn
i bi, n ∈ N

+.

So, the operator Dn is represented by δi as follows

(3.5) Dn = x−n
n∑

i=1

Sn
i δ

i = x−nδ(δ − 1) · · · (δ − n+ 1).

Remark 1. We can arrive to the same formula if we note that D = x−1δ,
δx−1 = −x−1, and that in (2.1) (but with D and δ interchanged, as now δ is given
and D is derived operator) Pn

i depends only on x0.

If Dx = 1, it is easily seen that δkxi = ikxi. As an example we compute

the sum S(k, n, x) =
n−1∑
i=1

ikxi:

1 + (x+ 1) + (x+ 1)2 + . . .+ (x+ 1)n−1 =
(x+ 1)n − 1

x
=

n∑
i=1

(
n

i

)
xi−1,

i.e.

1 + x+ x2 + . . .+ xn−1 =
n∑

i=1

(
n

i

)
(x− 1)i−1.
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By applying δk on this identity, we obtain

1kx+ 2kx2 + · · ·+ (n− 1)kxn−1 =
n∑

i=1

(
n

i

)
δk(x− 1)i−1

=
n∑

i=1

(
n

i

) k∑
j=1

sk
jx

jDj(x− 1)i−1.

So,

1kx+ 2kx2 + · · ·+ (n− 1)kxn−1(3.6)

=
n∑

i=1

k∑
j=1

j≤i−1

(
n

i

)
(i− 1)(i− 2) · · · (i− j)sk

jx
j(x− 1)i−j−1.

Putting x = 1 in the above identity, we obtain:

1k + 2k + · · ·+ (n− 1)k =
n∑

i=1

(
n

i

)
(i− 1)! sk

i−1

=
n∑

i=1

n(i)

i
sk

i−1 =
n−1∑
i=1

sk
i

i+ 1
n(i+1).

For large values of n (n ≥ k + 1), we have

n−1∑
i=1

sk
i

i+ 1
n(i+1) =

k∑
i=1

sk
i

i+ 1
n(i+1),

as sk
i = 0 for i > k. The same identity holds for small values of n (n ≤ i ≤ k),

since then n(i) = 0. So we obtain the famous identity

(3.7) 1k + 2k + · · ·+ (n− 1)k =
k∑

i=1

sk
i

i+ 1
n(i+1).

One can obtain various identities starting from (3.3). Let f(x) = xα,
α ∈ R. Then δnf = αnxα, while by (3.3),

δnf = xα
n∑

k=1

sn
kk!

(
α

k

)
.
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Comparing these identities, and first canceling and then replacing α with x,
we get

(3.8) xn =
n∑

k=1

sn
kx

(k),

and by inversion formula (3.4) we get

(3.9) x(n) =
n∑

k=1

Sn
k x

k.

Putting x = −1 into (3.9) and by use of inversion formula, we get

(3.10)
n∑

k=1

(−1)ksn
kk! = (−1)n,

n∑
k=1

(−1)kSn
k = (−1)nn!.

Assume f(x) = lnx. Then δnf = 0 for all n ≥ 2, and by (3.3) we have

δnf =
n∑

k=1

(−1)k−1(k − 1)!sn
k , so

(3.11)
n∑

k=1

(−1)k(k − 1)!sn
k = 0, for n ≥ 2.

4. Operator δ for θ(x)=xα+1

Assume θ(x) = xα+1, α ∈ R. Then it is easy to see that for δ = θD:

(4.1) δn =
n∑

k=1

cnkx
nα+kDk,

where cnk satisfies the difference equation (k, n ∈ N
+):

(4.2) cn+1,k = cnk + (nα+ k)cnk, 1 ≤ k ≤ n; c11 = 1, cnk = 0, k > n.

Let f(x) = xλ, λ ∈ R. Then by (4.1)

δnf = xλ+nα
n∑

k=1

cnkλ
(k),
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while computing δnf directly we find δnf = λ(λ+α) · · · (λ+(n−1)α)xλ+nα,
so

(4.3) λ(λ+ α) · · · (λ+ (n− 1)α) =
n∑

k=1

cnkλ
(k).

Remark 2. Numbers cnk correspond to Carlitz’s “degenerated” Stirling num-
bers S(n, k,−α), see [1, p. 36] for details.

If α = −1, then cnk satisfies

(4.4) cn+1 k = cn k−1 + (k − n)cnk,

while cnk = δn
k , where δ

n
k is the Kronecker δ-symbol. Now suppose α ∈ R

is arbitrary. If f(x) = lnx, then computing δnf directly, and comparing so
obtained identities, we get

(4.5)
n∑

k=1

(−1)kcnk = (2α− 1)(3α− 1) · · · ((n− 1)α− 1).

In a symilar way one can obtain
n∑

k=1

(−1)kcnkkα(kα+ 1) · · · (kα+ n− 1) = 0, for n = 1, 2, . . . , n− 1.

By Newton’s interpolation formula the sequence cnk satisfies cnk =
∆kf(0)/k!, where

f(x) = x(x+ α) · · · (x+ (n− 1)α) and ∆f(x) = f(x+ h)− f(x).

Further,

(4.6) ∆kf(x) =
k∑

i=0

(−1)k+i

(
k

i

)
f(x+ ih).

Putting x = 0 and h = 1 into (4.6), we obtain:

(4.7) cnk =
1
k!

n∑
k=1

(−1)k−i

(
k

i

)
i(i+ α)(i+ 2α) · · · (i+ (n− 1)α).

So we obtained the explicit solution of the difference equation (4.2). Observe
that for α = 0, sn

k = cnk, and so we have well-known representation of the
Stirling numbers of the second kind:

sn
k =

∆k0n

k!
=
1
k!

k∑
i=1

(−1)k+i

(
k

i

)
in.
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5. Algebraic Theory of the Operator δ

A. Robinson proved that the theory DCF0 of differential fields of char-
acteristic 0 has a model completion, this is the theory of differential closed
fields. For an axiomatization of these fields the reader may consult [7] for
example, where are stated simple axioms by L. Blum. Thus, every differ-
ential field F is contained in a differential closed field F̄. This means that
every differential equation with coefficients in F̄ if it has a solution in some
extension of the field F̄ then it has solution already in F̄.
Our first example will concern Kurepa’s function which is defined in com-

plex domain (cf. [4])1:

(5.1) K(z) =
∫ ∞

0

e−t t
z − 1
t− 1 dt, Re z > 0.

In what follows, we restrict our attention to z ∈ R
+.

In the following we shall use Hölder’s theorem which says that the gamma
function is not a solution of any algebraic differential equation. Namely,
according to this theorem, there is no differential equation of the form

(5.2) F (x, y,Dy,D2y, . . . ,Dny) = 0,

where F (x, y0, y1, . . . , yn) ∈ R, which is satisfied by Γ (x). So, Γ (x) is differ-
entially transcendental over the differential field R of real rational functions,
i.e. Γ (x) �∈ R̄ where R̄ is the differential closure of R.
Theorem 1. Kurepas function K(x) is differentially transcendental over
R, namely, K(x) is not a solution of any differential equation of the form
(5.2).

Proof. First let us observe that K(x) satisfies

(5.3) K(x+ 1)−K(x) = Γ (x).

If we assume that K(x) is differential algebraic over R, then K(x) ∈ R̄
and K(x) satisfies an equation of the form (5.2) (for y = K(x)), and then
K(x+1) satisfies F (x+1, y,Dy,D2y, . . . ,Dny) = 0, i.e. K(x+1) ∈ R̄ also.
As R̄ is a field, it follows that K(x+1)−K(x) belongs to R̄, and so, by (5-3),

1This function is connected with famous Kurepa’s left-factorial hypothesis. For an
overview it’s properties see [3].
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we would have Γ (x) ∈ R. But this is a contradiction to Hölder’s theorem,
thus K(x) is differentially transcendental over R. �
Related to this function we have the following questions:

Question 1. If R(Γ ) is the differential field obtained adjoining Γ (x) to R,
is K(x) transcendental over R, that is, is it true that K(x) �∈ R̄(Γ ), where
R̄(Γ ) is the differential closure of R?
Observe that elementary functions, as sin(x), cos(x), ex, ln(x) belong to

R̄, as all these functions are solutions of algebraic differential equations.
G.V. Milovanović introduced (cf. [5]) a sequence of functions satisfying:

K0(x) = Γ (x), K1(x) = K(x), Kn+1(x+1)−Kn+1(x) = Kn(x), n ∈ N.

As in the case of Kurepa’s function K(x), by use of a simple induction
argument one can show that all functions Kn(x) are transcendental over R.
Question 2. What is the transcendental rank ρS over differential field R
where S = R(K0,K1, . . . )? Is ρS =∞?
Now, let FD = (F,+, · ,D, 0, 1) be a differential field, and Fδ =

(F,+, · , δ, 0, 1) where δ = θ · D, θ ∈ F, θ �= 0. Further, let F̄D and F̄δ be
respectively their differential closures. Let us remind that τ :Fδ → FD is an
isomorphism if τ satisfies:

τ(x+ y) = τx+ τy, τ(xy) = τxτy, τ(δx) = Dτ(x), τ(0) = 0, τ(1) = 1.

Theorem 2. Fields F̄D and F̄δ are isomorphic, i.e. F̄D
∼= F̄δ.

Proof. If a ∈ F̄δ then a is a solution of an algebraic differential equation
E(δ) of the form (5.2) in respect to the operator δ. By (2.1), we can substitute
in this equation operator δ with D, and we shall obtain again an algebraic
differential equation E ′(D) but now in respect to D. Then a is a solution of
this equation, hence a ∈ F̄D. So we proved that F̄δ ⊆ F̄D. On the other
hand, D = θ−1δ, so we may apply a symmetrical argument, hence a ∈ F̄D

implies a ∈ F̄δ, i.e. F̄D ⊆ F̄δ. Therefore, we proved F̄D = F̄δ, and so
F̄D

∼= F̄δ. �
It should be observed that it is not necessary FD

∼= Fδ. For example, if
F = R[x], D is the ordinary differentiation operator and δ = xD, then the
equation δy = y has a solution in Fδ, y = x, while the equation Dy = y has
no solution in FD. Hence FD �∼= Fδ. By the previous theorem F̄D

∼= F̄δ,
and in fact we can produce an explicit isomorphism τ : F̄δ

∼= F̄D. We
can define τ by τ : f → f ◦ g, f ∈ F̄ , where g(x) = ex and ◦ is the
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composition of functions. Observe that this isomorphism corresponds to the
transformation x = ez in the algorithm of solving of Cauchy linear differential
equations. This observation give us a new, algebraic insight into the classical
method of solving Cauchy and similar types (e.g. Legendre linear equation)
of differential equations. We shall give an illustration by example:

Example. Consider x3y′′′ + 3x2y′′ − 2xy′ + 2y = 0.
By (3.5) this equation is equivalent to

(δ(δ − 1)(δ − 2) + 3δ(δ − 1)− 2δ + 2)y = 0,

i.e. to the equation (δ3 − 3δ + 2)y = 0 in F̄δ. The corresponding equation
(D3 − 3D + 2)y = 0 in F̄D has general solution c1h1 + c2h2 + c3h3, where
h1(x) = ex, h2(x) = xex, h3(x) = e−2x. As τ : F̄δ

∼= F̄D, and τ−1 is given
by τ−1: f → f ◦ g−1 (here g−1(x) = lnx), it follows that

τ−1(c1h1 + c2h2 + c3h3) = c1h1 ◦ g−1 + c2h2 ◦ g−1 + c3h3 ◦ g−1

is the general solution of (δ3 − 3δ+2)y = 0 in F̄δ, and so the solution of the
starting equation is y = c1x+ c2x lnx+ c3x

−2.

Accordingly, one should expect that to standard methods of solving differ-
ential equations which are done by “properly chosen transformations of the
independent variable” correspond in fact constructions of an isomorphism
between R̄D[x] and R̄δ[x] for properly chosen differential operators δ.
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