FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. 13 (1998), 1–5

INTUITIONISTIC AND CLASSICAL SATISFIABILITY IN KRIPKE MODELS

Zoran Marković

This paper is dedicated to Professor D. S. Mitrinović

Abstract. A class P^* of formulas was defined in [4] which whenever satisfied in a classical structure associated with a node of a Kripke model must also be forced at that node. Here we define a dual class R of formulas which whenever forced at a node of a Kripke model must be satisfied in the classical structure associated with that node.

1. Introduction

A Kripke model for intuitionistic logic (or for some theory based on intuitionistic logic) may be regarded as a partially ordered collection of classical structures for the same non-logical language, where the partial ordering is the relation positive submodel. For such structures, a notion of forcing at a node $(t \Vdash \varphi)$, one point in that partial order, is defined by induction on the complexity of formulas, starting with identifying forcing for atomic formulas with (classical) satisfaction in the corresponding classical structure $\mathcal{A}_t \models \varphi$. The inductive clauses for \lor , \land and \exists appear the same as in the classical case (e.g. $t \Vdash \varphi \lor \psi$ iff $t \Vdash \varphi$ or $t \Vdash \psi$), while the definitions for \rightarrow , \neg and \forall require the knowledge of what happens at the nodes above (e.g., $t \Vdash \neg \varphi$ iff for all t' such that $t \leq t', t' \not\models \varphi$). A natural question arises then of the relation between forcing at a node $(t \Vdash \varphi)$ and satisfaction in the classical structure associated with that node $(\mathcal{A}_t \models \varphi)$. The general question of the relation between classical and intuitionistic theoremhood and derivability has been discussed extensively, mostly by proof-theoretical methods, from the earliest days (for survey see [6], section 2.3. or [1], section 81.). While

Received February 27, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 03F55, 03C90; Secondary 03B55.

¹

Zoran Marković

an intuitionistic theory (i.e. the set of its consequences) is in an obvious way a subtheory of its classical counterpart, it was shown, using translations defined by Gödel and others, that a classical theory can be embedded into the "negative fragment" of the corresponding intuitionistic theory (i.e., the fragment consisting of formulas without \lor and \exists , with each of atomic subformulas occurring only in a negative context). For particular theories a number of stronger results was proved (e.g., HA and PA have the same Π_2^0 theorems). For the question at hand, some results were proved in [**3**] and [**4**]. It was shown that forcing and (local) satisfiability coincide exactly for the formulas which are intuitionistically equivalent to positive formulas (i.e., formulas containing only \lor , \land and \exists). It was also shown that one implication $(\mathcal{A}_t \models \varphi \Rightarrow t \Vdash \varphi)$ holds for formulas φ for which there is some positive formula ψ , classically equivalent to it but intuitionistically implying it. In this paper we describe a class of formulas for which the opposite implication holds $(t \Vdash \varphi \Rightarrow \mathcal{A}_t \models \varphi)$.

2. Preliminaries

We define a Kripke model for a language L to be a structure

$$\mathcal{M} = \langle (T, 0, \leq); \mathcal{A}_t : t \in T \rangle$$

where $(T, 0, \leq)$ is a partially ordered set with the least element 0 and \mathcal{A}_t for $t \in T$ are classical structures for the language L satisfying the condition, for $s, t \in T$:

$$s \leq t$$
 implies $\mathcal{A}_s \subseteq^+ \mathcal{A}_t$

where \subseteq^+ denotes the relation of being a positive submodel: the universe A_s of \mathcal{A}_s is a subset of the universe A_t of \mathcal{A}_t and the interpretation of some relation symbol in \mathcal{A}_s is a subset of its interpretation in \mathcal{A}_t . The forcing relation is defined for $t \in T$, φ, ψ formulas of L and $a_1, a_2, \ldots, a_n \in A_t$ by:

- 1° $t \Vdash \varphi[a_1, a_2, \dots, a_n]$ iff $\mathcal{A}_t \models \varphi[a_1, a_2, \dots, a_n]$, for atomic φ .
- $2^{\circ} t \Vdash \varphi \land \psi \quad \text{iff} \quad t \Vdash \varphi \quad \text{and} \quad t \Vdash \psi.$
- $3^{\circ} t \Vdash \varphi \lor \psi \quad \text{iff} \quad t \Vdash \varphi \quad \text{or} \quad t \Vdash \psi.$
- 4° $t \Vdash \exists x \varphi(x)[a_1, a_2, \dots, a_n]$ iff $\mathcal{A}_t \models \varphi[a, a_1, a_2, \dots, a_n]$, for some $a \in A_t$.
- 5° $t \Vdash \varphi \to \psi$ iff for every $t' \in T$ such that $t \leq t'$ $(t' \not\Vdash \varphi \text{ or } t' \Vdash \psi)$.
- 6° $t \Vdash \neg \varphi$ iff for every $t' \in T$ such that $t \leq t'$ $(t' \not\Vdash \varphi)$.
- 7° $t \Vdash \forall x \varphi(x)$ iff for every $t' \in T$ such that $t \leq t'$ and for every $a \in A_{t'}$ $(t' \Vdash \varphi[a, a_1, a_2, \dots, a_n]).$

$\mathbf{2}$

Intuitionistic and Classical Satisfiability in Kripke Models

By $\mathcal{A}_t \models \varphi[a_1, a_2, \dots, a_n]$ we denote the (classical) satisfiability in the (classical) structure \mathcal{A}_t , assuming also that all free variables od φ are evaluated by the elements in square brackets.

Let P be the set be the set of all formulas of L built using only connectives \lor , \land and \exists . We call the formulas in P positive.

Let P^* be the set of all formulas φ of L such that for some $\psi \in P$ we have $\vdash_c \psi \longleftrightarrow \varphi$ and $\vdash \psi \to \varphi$ (by \vdash_c we denote the provability in classical logic while \vdash is reserved for intuitionistic logic).

In [4] the following two results have been proved.

Lemma 1. A formula $\varphi(x_1, x_2, \ldots, x_n)$ of L is intuitionistically equivalent to a positive formula if and only if for any Kripke model $\mathcal{M} = \langle (T, 0, \leq); \mathcal{A}_t : t \in T \rangle$, any $t \in T$ and any $a_1, a_2, \ldots, a_n \in A_t$ we have

$$\mathcal{A}_t \models \varphi[a_1, a_2, \dots, a_n] \quad iff \quad t \Vdash \varphi[a_1, a_2, \dots, a_n].$$

Lemma 2. $\varphi \in P^*$ if and only if for any Kripke model $\mathcal{M} = \langle (T, 0, \leq); \mathcal{A}_t : t \in T \rangle$, any $t \in T$ and any $a_1, a_2, \ldots, a_n \in \mathcal{A}_t$ we have

 $\mathcal{A}_t \models \varphi[a_1, a_2, \dots, a_n] \quad implies \quad t \Vdash \varphi[a_1, a_2, \dots, a_n].$

3. Results

Definition 1. Let $R_0 = P \cup \{\neg \varphi : \varphi \in P^*\}$. If R_n is already defined, let R_{n+1} be the smallest set of formulas satisfying the following conditions:

- (1) $R_n \subseteq R_{n+1}$,
- (2) if $\varphi \in P^*$ and $\psi \in R_n$ then $(\varphi \to \psi) \in R_{n+1}$,
- (3) if $\varphi, \psi \in R_n$ then $(\varphi \lor \psi), (\varphi \land \psi), \forall x \varphi, \exists x \varphi$ are in R_{n+1} .

Finally, let $R_{\omega} = \bigcup_{n \in \omega} R_n$.

Theorem 1. If $\varphi(x_1, x_2, ..., x_n)$ is a formula in R_{ω} then for any Kripke model in the appropriate language $\mathcal{M} = \langle (T, 0, \leq); \mathcal{A}_t : t \in T \rangle$, any $t \in T$ and any $a_1, a_2, ..., a_n \in A_t$

$$t \Vdash \varphi[a_1, a_2, \dots, a_n]$$
 implies $\mathcal{A}_t \models \varphi[a_1, a_2, \dots, a_n]$.

Proof. Proof is by induction on the construction of R_{ω} . If $\varphi \in R_0$ it means $\varphi \in P$ or $\varphi = \neg \psi$ for some $\psi \in P^*$. Assume $\varphi \in P$ and $t \Vdash \varphi$. By Lemma 1., we immediately get $\mathcal{A}_t \models \varphi$. Assume now $\varphi = \neg \psi, \psi \in P^*$

3

Zoran Marković

and $t \Vdash \neg \psi$. This implies $t \nvDash \psi$ and by Lemma 2. we have $\mathcal{A}_t \nvDash \psi$ and thus $\mathcal{A}_t \models \neg \psi$. Suppose that the theorem holds for formulas in R_n , let $\varphi \in R_{n+1} \setminus R_n$ and let $t \Vdash \varphi$. There are five cases:

- (i) $\varphi = \psi \to \chi$ where $\psi \in P^*$ and $\chi \in R_n$. $t \Vdash \psi \to \chi$ implies that $t \not\Vdash \psi$ or $t \Vdash \chi$. If $t \not\Vdash \psi$, by Lemma 1. we have $\mathcal{A}_t \not\models \psi$, and if $t \Vdash \chi$ we have $\mathcal{A}_t \models \chi$, by the induction hypothesis. In either case $\mathcal{A}_t \models \psi \to \chi$.
- (ii) The other four cases follow from the definition of forcing and induction hypothesis.

Definition 2. $R = \{ \varphi : \text{ for some } \psi \in R_{\omega}, \models \psi \longleftrightarrow \varphi \text{ and } \vdash \varphi \to \psi \}.$

Corollary 1. If $\varphi(x_1, x_2, \ldots, x_n) \in R$ then for any Kripke model in the appropriate language $\mathcal{M} = \langle (T, 0, \leq); \mathcal{A}_t : t \in T \rangle$, any $t \in T$ and any $a_1, a_2, \ldots, a_n \in A_t$

$$t \Vdash \varphi[a_1, a_2, \dots, a_n]$$
 implies $\mathcal{A}_t \models \varphi[a_1, a_2, \dots, a_n]$.

Proof. Assume $t \Vdash \varphi$ and $\psi \in R_{\omega}$ be such that $\models \psi \longleftrightarrow \varphi$ and $\vdash \varphi \rightarrow \psi$. Then $t \Vdash \psi$ and by Theorem 1. we get $\mathcal{A}_t \models \psi$ which means $\mathcal{A}_t \models \varphi$ since $\models \psi \longleftrightarrow \varphi$.

Corollary 2. Let Γ be an intuitionistic theory with a set of axioms from R and let φ be a sentence from P^* . Then $\Gamma \models \varphi$ implies $\Gamma \vdash \varphi$.

Proof. Let $\mathcal{M} = \langle (T, 0, \leq); \mathcal{A}_t : t \in T \rangle$ be a Kripke model for Γ. This means that $0 \Vdash \psi$ for every axiom ψ of Γ. Since $\psi \in R$ we have $\mathcal{A}_0 \models \Gamma$ and by classical completeness theorem we get $\mathcal{A}_0 \models \varphi$. As $\varphi \in P^*$, by Lemma 2. we get $0 \Vdash \varphi$. Using the strong completeness theorem of intuitionistic logic for Kripke models, we obtain $\Gamma \vdash \varphi$.

Corollary 3. If φ is a sentence from R and ψ is a sentence from P^* then $\vdash_c \varphi \to \psi$ implies $\vdash \varphi \to \psi$.

Proof. Trivial consequence of Corollary 2. and deduction theorem.

REFERENCES

- 1. S. C. KLEENE: *Introduction to Metamathematics*. North-Holland Publ. Comp., Amsterdam, 1952.
- 2. S. KRIPKE: Semantical analysis of intuitionistic logicI. In: Formal Systems and Recursive Functions (J.N. Crossley and M.A. Dummett, eds.), North-Holland Publ. Comp., Amsterdam, 1965, pp. 92–130.

4

Intuitionistic and Classical Satisfiability in Kripke Models

- 3. Z. MARKOVIĆ: Model Theory for Intuitionistic Logic. Ph.D. dissertation, Univ. of Pennsylvania, Philadelphia, 1979.
- 4. Z. MARKOVIĆ: Some preservation results for classical and intuitionistic satisfiability in Kripke models. Notre Dame J. Formal Logic **24** (1983), 395–398.
- 5. A. S. TROELSTRA: Mathematical Investigations of Intuitionistic Arithmetic and Analysis. Lecture Notes in Mathematics 344, Springer-Verlag, Berlin, 1973.
- 6. A. S. TROELSTRA and D. VAN DALEN: Constructivism in Mathematics., North-Holland Publ. Comp., Amsterdam, 1988.

Mathematical Institute Knez Mihailova 35 11000 Belgrade Yugoslavia