Vol.2, No 9, 1999 pp. 973-982
UDC: 531.134
EXTENSION OF THE BERNOULLI'S CASE
OF A BRACHISTOCHRONIC MOTION
TO THE MULTIBODY SYSTEM IN THE FORM
OF A CLOSED KINEMATIC CHAIN
Vukman M. Čović, Mirjana M. Lukačević
Faculty of Mechanical Engineering, University of Belgrade, Yugoslavia
Abstract. Considering the brachistochronic motion in a homogeneous field of gravity of the multibody system given in the form of a closed kinematic chain, free from external constraints, we prove that the trajectory of the system in the part of the configuration space (this part being the one which includes all the generalized coordinates of the system except the Cartesian coordinate yC of the system's centre of inertia referring to the vertical axis) is a geodesic. Having in mind that this geodesic is completely determined by the known initial and terminal conditions given for the brachistochronic motion considered, as well as by the nature of the mentioned part of the configuration space, and using the fact that the configuration of our multibody system in this part of the space is determined by the position of a representative point on the geodesic, we further define the position of the whole system using two coordinates only. One of them is the arc-lenght *, which determine the position of a representative point on the geodesic, and another is the coordinate yC, determining the one-dimensional subspace of the configuration space. This sub-space, together with the subspace containing the geodesic, constitute the complete configuration space of our system. Considering the motion of the system in such a way, we obtain the result referring to the trajectory of the system which is completely analogous to the famous Bernoulli's result, found in the case of a single particle. Obtained result is illustrated by the numerical example.
Keywords: Brachistochronic motion, Closed kinematic chain, Analogy with the Bernoulli's case of a brachistochronic motion

UOPŠTENJE BERNULIJEVOG SLUČAJA BRAHISTOHRONOG KRETANJA NA SISTEM KRUTIH TELA
U OBLIKU ZATVORENOG KINEMATIČKOG LANCA
Rešava se problem brahistohronog kretanja zatvorenog kinematičkog lanca, slobodnog od spoljašnjih veza u homogenom polju teže. Geometrizacijom problema ovo se kretanje razmatra u konfiguracionom prostoru koji se može razdvojiti na dva potprostora - jedan je jednodimenzioni i određen Dekartovom koordinatom središta masa sistema koja odgovara vertikalnoj osi, yC, a drugi obuhvata sve ostale generalisane koordinate sistema. Pokazuje se da je u tome drugom potprostoru trajektorija sistema geodezijska linija. Birajući dalje za koordinate koje određuju položaj sistema luk te geodezijske linije i koordinatu yC, dobija se rezultat koji se potpuno poklapa sa poznatim Bernulijevim rezultatom koji se odnosi na slučaj  brahistohronog kretanja jedne materijalne tačke. Rezultat rada ilustrovan je primerom.