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APPLICATION ON A MORE ACCURATE BENDING THEORY
OF A SANDWICH PLATE WITH A LIGHT CORE

UDC 539.3:531.3

Zlatibor Vasié

Faculty of Mechanical Engineering, University of Pristina

Abstract. The application of the more accurate theory of bending thin homogenous
plates in calculation of the sandwich nonhomogenous constructions is presented in the
work. There were derived the basic equations for the sandwich plate of symmetrical
structure with thin outer layers, that bend according to REISSNER-MINDLIN 's theory,
and middle layer exposed only to transversal shear. The bending variational equation
was derived by varying the possible displacements. In that the appropriate static
boundary conditions were determined on each end of the plate and the basic equations
of bending for the sandwich plate were confirmed.

1. INTRODUCTION

There are two approaches for the calculation of multilayer constructions. In the first,
the basic equations are obtained on the basis of kinematic conditions for each layer
separately [4]. With this approach it is possible to describe, with high accuracy, the
stress-strain state as well as the local influences in each layer of the construction. The
number and order of the equations depend on the number of the construction layers. In
the second approach, the calculation is performed on the basis of hypothesis about the
straight line that is unique for all the package layers [4], [2]. The number and order of
equations do not depend on the number of package layers.

The theory of sandwich constructions is based on different assumptions depending on
stiffness and treatment of the middle layer (core). In constructions with the stiff core the
calculation does not differ from the calculation of multilayer constructions. In
constructions with the light core, the hypothesis of piecewise line is used. For the outer
layers, the Kirchhoff's hypothesis of straight vertical line is used, and for the middle layer
the hypothesis of straight line for two-dimensional body is used, considering only the
transversal shear [7], [1], [5].
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930 Z. VASIC

The basic equations of bending for sandwich plates, on the
basis of the more accurate theory for bending the outer layers,
were derived in the work. These plate layers bend according to
Reissner-Mindlin's theory, while the middle layer is exposed
only to transversal shear. The bending of the plate is reduced
on solving the system of seven partial differential equations
for the displacement components of the outer layers middle Che— / """"
plane and unknown functions 6.(x,y) and 6,(x,y) that
determines the rotation of the vertical line during deformation. Fig. 1.

The number of unknown values, as well as the number of
differential equations is for two higher than the classical theory.

In the work it is also derived the variational equation, where, once again, the
differential equations of bending and corresponding static boundary conditions on each
plate end were presented. The number of the boundary conditions is for one higher in
relation to the classical theory, it enables for all kinematic conditions on the plate contour
to be satisfied, that presents the advantage of the more accurate theory comparing with
the classical one.

2. COMPONENT DISPLACEMENTS

Applying the Reissner-Mindlin's theory [4], [3] on bending the outer layers, line
perpendicular on middle plane of the plate changes into the piecewise line (Fig. 1).
Different from the classical theory, the rotation of perpendicular line during the
deformation will be determined using the unknown functions 6,(x,y) and 6,(x,y).
Component displacements of the random point of the outer layer were determined with
relations (for -2 —¢t <z < —h):

t t
ugzul_él-'-h*-E@X’ vg:vl—él+h+5§y, wg=w, (1)

where u,, v, w are component displacements of the middle plane point of the plate upper
layer.
For the bottom layer (for hA<z< h +¢)itis:

ud=u2—%—h—%§x, vd=v2—%—h—%§y, Wy =w, 2)

where u,, v,, w are component displacements of the middle plane point of the plate
bottom layer.
The displacements of the middle layer (for -4 < z < h) are:

1 z 1 z
U :E(ul "‘“2)_%(“1 —uy, —18,), v, :E(Vl +V2)_E(V1 —v,=10,), w,=w. (3)
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3. FORCES AND MOMENTS

The component deformations and stresses in the outer layers can be calculated by the
known formulas of elastic theory [6]:

€ —a_u € :ﬂ y :6_u+ﬁ y :6_u+a_w y :@+a_w
Toox] ooy’ Y gy ox % 0z ax T 0z oy
_ __E A
ox_l_uz(sx-l-usy)’Uy_l_u2(8y+u8x)’ ()
E E E

1, =— s T = VY, T, = z 5
ST 2+ T a0

where E is the elasticity modulus and W is Poisson's coefficient for the outer layers
material.
In the plate middle layer only the shear stresses will act:

sz = G3yxz H Tyz = G}Vyz s (5)

where G5 is the shearing modulus of elasticity of the middle layer material.

Forces and moments in the plate layers cross-sections are calculated integrating the
stresses in relation to thickness of the corresponding layer, i.e. by integrals of the
following form:

N.,N,, T, :I(cx,cy,rxy)dz,
Qx ’ Qy :J'(sz’.[yz)dz ’ (6)
M,, M,, H:J'(ox,cy,rxy)zdz,

By using the formulas (1) to (6) we obtain the moments on the unit length of outer
layers in relation to their middle plane

5, __ 08, 96,
My =M, __D%+U E Myl—Myz—‘D%"'u x%

N (7
H =H,= _ EL E
dy
normal and shear forces

N,=B "‘ﬂlﬂ Ny, =B vl"‘ll%

Ox dy dy Ox
I, =5 B, % ®)

7 2 Hoy oOx

1- 0
04=0, =5 Ere + x@ QyI:Qﬂ:BT“%e +a—jE
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3
where D :E—ZZ is flexural and B = 5 is axial rigidity of this layers, and
12(1-p2) (1-p)
shear forces of middle layer
y

Positive moments and forces that act on the element of plate are shown in Fig. 2 and
3. In all formulas values with index "1" correspond to upper, with index "2" to bottom,
and with index "3" to the middle plate layers.

4. EQUILIBRIUM EQUATIONS

The basic equations of bending are obtained from the equilibrium equations of plate
layers’ elements. Equations of forces equilibrium for the plate upper layer (Fig.2) are
reduced to the following form:

ON 0
ale +%+Tz‘cl =0, ai_,_ vl +1., =0, anl + le +g=0,
Ox dy ’ Ox dy Y Ox dy (102)
a
oM
aMXI + aHl +£szl _Qxl = Oa aHl + i +£Tzvl _Q))l = O
Ox dy 2 Ox ad 2 -
a(x.y)
Nx1 T1<... {.T.l-': Nx1+... QY H
=y fE "
Qxt » Qxi+...
D —
H+...
X + QX MX
2h Qx3 Qx3
ZL Mx+...
H Qx+...
Tax2
Nx2 Nx2+...
<= g B NQ - My 5
Q2 Ty To+.. &% Qy+...
dx | H+...
Fig. 2. Fig. 3.
For the plate bottom layer these equations are:
oN
W (O =0, oz (oo, 802,20
Ox dy Ox dy Ox dy (10b)
oM., OH,  t 0H, OMy, 't
e T2 Qx2 2+ - 2}2 Q}2
Ox dy 2 Ox dy
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The same equations for the plate middle layer will be:

T an3 + aQy3 =0 ,

Ox dy (10c¢)
Q h(szl z‘c2) 0 Qy3 h(szl zy2) .

2 =0 sz2 zyl =0 ’

In the equilibrium equations (10) T..1, .o, T, T.)o are shear stresses that act in the planes
of coupling the outer layers with the plate middle layer.

5. BASIC EQUATIONS

The equilibrium equations (10) can be reduced on the system of seven partial
differential equations in relation to unknown functions ug (x,y), va (x,y), ug(x,y), vg(x,p),
plate flexure w(x,y) and angles of outer layers perpendicular line rotation 6,(x,y) and
6,(x,y), where

1 1 1 1
Uy :E(ul +tuy), vy =E(Vl +v,), ug :E(ul +tuy), v =E(V1 V). (11)

Using the formulas (7), (8), (9) and (11), we reduce the system of equilibrium
equations (10) to the following form:

0%u, +1—u62ua L1t %y _

ox? 2 ayz 2 0Ox0y ’

2 2 2 (12)
07V +1—u6 Vg +1+u6 Uy _
a’ 2 ox? 2 Oxdy
BhEP ug 1—“0 up 1+p0 VBH_ —9 +ha—w—0
G3H(')x 2 ay 2 axayH Ox
BhB? VB 1- ua Vg 1+pa ug H_ - —9 +ha—w— (13)
GiHay* 2 ax* 2 axdy{ dy
g 00 ¢ ug Ov
2DDZELC + 2 Doplh+ LH TR+ DR iy
Ox dy % O 20 Ox Oy q(x. )
2 ]2 9% _
2Dhp 92x+1 no’e, , 1+p H+ s —e 0w Bh(l “)H—ex+a—wﬁ=o,
Gt Hax 2 9y’ 2 axayH Ox Gt
(14)

D
2DhEPzey+l—p329 JArwote Hoog ow Bh-wH oo owd
, .

9

GtHoa? 2 ax? 2 adpf BT,
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Equations (12), (13) and (14) are separated on two independent systems, system (12)
that has trivial solutions on uq, vy and equations (13) and (14) coupled on the basis of the
unknown values ug, vz, w, 6,, 6,. The system of partial differential equations (13) and
(14) represents the basic system of equations for bending of sandwich plate with light
core of symmetrical structure. This system of equations differs from the same system of
the classical theory by the equations (14) and members that are defined by the functions
0,(x,y), B,(x,y). The basic system of equations, as well as all the expressions, may be
reduced on corresponding equations of the classical theory if we introduce the

ow ow

replacements 6. =—, 0, =— , see [1].
P T Ty (1]

6. VARIATIONAL EQUATION OF BENDING. BOUNDARY CONDITIONS

Varying the possible displacements, uq, va, g, vg, W, 6;, 6, , by the energy method,
as it is well known, we may obtain the basic equations (12), (13) and (14), and necessary
boundary conditions. Energy bending equation of the sandwich plate is:

A+ A=0, (15)

where A4, is strain energy, and A is work of external forces. Strain energy of outer layers
can be calculated by formula [6]

1
Ad1,2 = EJ‘(Oxsx + 0))8)) + Txyyxy + Tz Yz + Tyzyyz)dV s (16)
4
and strain energy of the middle layer is
1
Ad3 =EJ-(TXZVXZ +Tyzyyz)dV (17)
v

Integrating the expressions (16) and (17) on the thickness of corresponding layer,
taking care of expressions (1) to (5) and (11), we obtain:

‘_ﬂ% %]ax Haya a;lx oy 2uEﬁgyg+ 54,
+FPMB§+FPVB§+2“6MB@VB+1—uPPuB ()vﬁégl+

Ox dy 2 Hay

+ng=§f’&§+ﬂa"y§+zpa"xae #L7HEPS, | é%

Ox Oy 2 an

(18)

20,5 ow
T | LY Ry il —e + 12 Eddy .
2 Er 2" ax@+ h i

The work of uniformly distributed load is determined by the expression:
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A=%q”wdxdy. (19)
Varying the possible displacements in the energy equation (15), we obtain:
04, +84=0. (20)

Hence, if the plate is bounded by edges x = 0, x =a and y = 0, y = b, varying the
possible displacements uq, vy, g, vg, W, 6;, 6, , variational equation (20) is:

_}}EDZB zuu+1—u62uu+l+p02vu Uy dxdy —

070 o> 2 ayz 2 0xdy “

_}}EDZB zva Ml 0, +1+|J.62uu Vo dxdy —
2 ox’ 2 OxQdy .

ab[]

2 2 2
—J’J’DZBHa P 1'“6”B+““6VBEL2G3B +28, w2 %’dedy
Hox*> 2 9® 2 axdyH & ox

ab[] 2 - 2
B 1-po vg +1+ua uBELZGH VB+£9 +ha_W%dexdy—
27 dy

_IIE an 2 ol 2 axayH h 3

ab[]
I} H@ze 1-p 0%e, 1+“69yE_G3tB_ + 9+haw
0 Hax 2 ' 2 ayf hO o
- H)EL 0, + g—: %Gxdxdy - (0
ab 0 2 ?
_I}E‘ZDHa 0, ,1-uds, +1+“629"H—G3tﬂ' —9 s

WH Ho' 2 a2 oxdyf PR RCAEYCAr®

00 O
19 L P Bt
20 0x Oy |
9 00 , O
E‘rﬂ wl g [owdxdy +
B B
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90, O
+2J'D y+u69 1 IJ ex + Gdex+
2 oy Ox
+2I%3E~ + 9 +h—% %9 +—%ﬁwmdx 0.
)=

(21 cont.)

All double integrals in equation (21) are equal to zero, the terms by the variation of
possible displacements Oug, ..., 08, obviously correspond to the equilibrium equations
(12), (13) and (14), while definite integrals define the static boundary conditions on each
side of the plate. Subintegral function of the last double integral can be reduced to the
form of the third equation of the system (13) using the first two equations of this system

and equation (14).

7. EXAMPLE

Rectangular sandwich plate is subjected to uniformly continuos load on the whole
surface. The plate is fixed by joints and reinforced by diaphragm of infinite rigidity in
the support plane (Fig. 4). The boundary conditions of such supported plate, according to

(21), are:
Oug 90
_B:_x: = =0 =0
0x 0x YTy
for x =0 and x = a, and
0 00
ﬁ=—y=w—uﬁ=9x=0
dy Oy

fory=0andy=>.
If the solution of the basic system is searched in the form:
w(x, y) = Csin(0x)sin(By) ,
ug(x, ) = Cycos(ax)sin(By) , vg(x,y) = Cssin(ax)cos(By) ,
0, (x,») = C4cos(ax)sin(By), 6, (x,») = Cssin(ax)cos(By),

(22)

(23)

24)
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Fig. 4.
where « =ﬂT, B =%T, m,n=12,.., the boundary conditions (22) and (23) will be
a
fulfilled, and the system of partial differential equations (13) and (14) will be reduced to
the system of algebraic equations on unknown coefficients Cy, ..., Cs. For a = 3 and

h = 4t, the desired coefficients are:
_ g2’ 2 + ko) +3(1 - (1 +2k,0%)]
Gskkyta®
_ ql8a’ +27(1- )]
Gskkta®
~3q[8t*a’ ~(1-p)(1 + 2k )]
Gskkyra*

G

G =G (25)

C,=Cs=

where k =32:2a%+ (1 -p)(122 + ka?), k :g—h. (26)
3

In that way the problem is solved. With the relations (24) we may estimate all forces

and displacements in any point of the plate with the fulfillment of the boundary

conditions.
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PRIMENA STROZIJE TEORIJE PRI SAVIJANJU
TROSLOJNE PLOCE SA LAKIM JEZGROM

Zlatibor Vasié

U radu je prikazana primena stroZije teorije savijanja tankih homogenih ploca kod proracuna
troslojnih nehomogenih konstrukcija. Izvedene su osnovne jednacine troslojne ploce simetricne
strukture sa tankim spoljasnim slojevima, koji se savijaju prema RESSNER - MINDLIN - ovoj
teoriji i srednjim slojem koji je izloZen samo poprecnom smicanju. Metodom energije, varirajuci
moguca pomeranja, izvedena je varijjaciona jednacina savijanja. Pri tome su odredjeni
odgovarajudi staticki konturni uslovi i potvrdjene osnovne jednacine savijanja troslojne ploce



