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Abstract. The purpose of this article is to reconsider an example of the spherical shell,
which has been used for more than ten years in monlinear finite element analysis tests.
However, the numerical results were compared, as a rule, with the analytical results
concerning the shell (a rotational paraboloid) having only one spherical point.
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INTRODUCTION

The purpose of this paper is to point out a dilemma we were faced with during
validity verification of mathematical model itself, before its finite element idealization.
Namely, bearing in mind that "there are many examples of ... making serious simulation
errors... which occur ... because the real ... structure has not been adequately represented"
by the FE model' (s. [18], pp. 17-18), we believe it to be of benefit to reconsider an
example of a spherical shell, which has been used for more than ten years in nonlinear
finite element analysis tests; however, the numerical results were compared, as a rule,
with analytical results pertaining to a shell having only one spherical point.
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! We remember, for example, the discovery of an inconsistency in the finite element model from User project
"Cantilevered curved beam problem for evaluating shell elements" in FINITE ELEMENT NEWS - 1987, Issue
No. 4 (August).
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SPHERICAL SHELL VERSUS SHELL WITH SPHERICAL POINT

During the quadrilateral shell element testing using the code STATA (Static Analysis
program) of an in-house structural analysis package [14] (the shell element used is four
noded linear isoparametric, based on the Cosserat shell theory and selective integration;
the details are presented in [5] and [6]) we have utilized some of the popular benchmarks:
the pinched cylinder problem, the barrel vault problem, the hemisphere with pinch
loading, etc. One of these was the example of the shallow spherical shell (Fig. 1), which
we first encountered in [13]; it is typical for nonlinear analysis, but we considered it
might be useful to apply this shallow doubly-curved shell as a test in linear static
analysis, too, However, first hesitation arised during the preparation of the code for
automatic mesh generation — is R, = R, the sphere radius, so that the spherical sector
surface is in question (s. Fig. 1, taken from [13], i.e. [12])? This follows from the fact that
the intersection of these radia continuations (Fig. 1) seemingly lies on the concentrated
load direction. (Table 1 contains part of a code for node coordinate generation in the case
of quadrilateral finite shell elements.)

Fig. 1. Model 1: R; = R, = 2540. mm, @ = 784.90 mm, # = 99.45 mm

Table 1.

ngrid - number of elements
per boundary of one
. quarter of the shell
Phy O=asin(a/sqrt(R*R-a*a))
Theta O=asin(a/sqrt(R*R-a*a))
do i=1,ngrid+1
do j=1,ngrid+l
hk=j+(ngrid+l)*(i~—l)
Phy=tan((j-1)*phy 0/ngrid)*cos((i-1)*Theta 0/ngrid)
Theta=tan((i-1)*Theta 0/ngrid)*cos((§—1)* o i
X(k)=R*Phy/sqrt(l.+PHy*ng) ) ({3-1)*Phy_0/ngrid)
Y(k)=R*Theta/sqrt(l.+Theta*Theta)
Z(k)=sqrt(R¥R-X(k)*X(k)-Y(k)*Y(k))
enddo
enddo

In view of the fact that, for this example, a reference (in [12] and [13]) is made to [7],
we browsed through this paper too, and we saw the situation presented in Fig. 2 (s. [7],
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p. 46; the same is in [4], p. 163 and [9], p. 201) — from there we concluded that R, and R,
are the radia of the circles obtained by cutting of sphere R=.R?+4> with a plane

orthogonal to the model square planform. The fact that paper [9] deals with "a spherical
dome segment on a square base" leads to this conclusion, too. (The corresponding code
for node coordinate determination is presented in Table 2.)

Fig. 2. Model 2: R, = R, = 2540. mm, R = R} +a* =2658.5mm , a = 784.90 mm,
h=99.45 mm

Table 2.

R=sqrt(R1*Rl+a*a)
Phy=asin(a/R)
Theta=asin(a/R)
do i=1,ngrid+l
do j=1,ngrid+l
k=j+(ngrid+1)+(i-1)
X(k)=R*sin((j-1)*Phy/ngrid)
Y(k)=R*sin((i-1)*Theta,/ngrid)
Z(k)=sqrt(R*R-X(k)*X(k)-Y(k)*Y(k))
enddo
enddo

However, because of the non-negligible difference between the central deflections (s.
Table 5) during the linear analysis of the models from Fig. 1 and Fig. 2, we could not be
certain how to use and with what to compare the obtained results. Therefore, we searched
for another reference in connection with the example under consideration. In this way, we
arrived at Fig. 3 (s. [10], p. 409; [8], p. 168; [3], pp. 47—49); it follows from there that the
prescribed R =2540 mm is the radius of curvature for a spherical shell on a quadratic
base (this is unambiguously clear from the analytical point of view in [8], where the angle
o =36° is quoted — O is the "measure" of the part of the sphere in question: sin 1/2a =
sin 18° = 0.30902 = a / R). (Table 3 presents the code for node coordinate determination
in this case.)
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Fig. 3. Model 3: R =2540. mm, R, =R, =./R* —a® =2415.7mm, a = 784.90 mm,
h=99.45 mm

Table 3.

R=2540.
Phy=asin(a/R)
Theta=asin(a/R)
do i=1,ngrid+1
do j=1,ngrid+l
k=j+(ngrid+1)#*(i-1)
X(k)=R*sin((j-1)*Phy/ngrid)
Y(k)=R*sin((i-1)*Theta/ngrid)
Z(k)=sgrt(R*R-X(k)*X(k)=Y(k)*Y(k))
enddo
enddo

At this point of our investigation, we were in doubt which of the models: in Fig. 1,
Fig. 2 or Fig. 3, is to be considered as competent. There was nothing left for us to do but
to find references [1] and [2], quoted by all others, where Leicester studied the
deformation of shallow shells. When we received them, the true surprise was in store -
what all authors reference as a spherical shell, and Leicester calls the spherical shell too,
in [1] and [2] is, in fact, a rotational paraboloid (Fig. 4):

1, __ _ 1, __ - 1 __ _ 1 __ -
z==kx(x—-a)+—k -b)y=—x(x—a)+—— -b),
2 1X(x—a) 5 2¥(y—b) 2R, (x—a) 2Roy(y )

where x,y,z are Cartesian coordinates, @ =b =const const are the length and width of
the shell (the shell is square in planform; in the case a rectangular shell planform, elliptic
paraboloid is in question), k; =k, = k are the principal curvatures at the center of the
shell, and R, = 1/k is the radius of curvature in this point. This shell has only one
spherical (or umbilical) point — at the paraboloid head.
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Fig. 4. Model 4: a=a/2=b/2=784.90mm , h = 99.45 mm, H/h =1.2500,

2
a

Ry =——=2477.9 mm
2H
Table 4.

Phy=asin(a/R o)
Theta=asin(a/R o)
do i=1,ngrid+l -
do j=1,ngrid+l
k=j+(ngrid+1l)*(i-1)
X(k)=R_o*sin((j-1)*Phy/ngrid)
Y(k)=R o*sin((i-1)*Theta/ngrid)
Z2(k)=+0.5%(~(X(k)+a)*(X(k)=-a)
1 -(¥(k)+a)*(¥(k)-a))/R o
enddo -
enddo

In our Cartesian coordinates x, y, z, where:
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the equation of this rotational paraboloid reads:

s=- L (x* + 2)+i
2R, 4 Ry

In [1] (and [2]) this shell is defined by its thickness parameter H/A = 1.25, in which A
is the rise of the shell along the boundaries (s. Fig. 4), and # is its thickness. If the shell
thickness is 2 =99.45 mm, it follows that: H=1.25#=124.3125 mm, and, having in
mind that:

2

a
H =2(a,0) = —,
(@0 =3
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finally:

2
a

Ry=——=2477.9mm.
2H

(This figure is used in the corresponding code for node coordinate determination
presented in Table 4.)

NUMERICAL RESULTS

Linear static analysis was performed for all four thin shell models. Only a uniform
pressure ¢ =0.1 N/mm* normal to the shell surface has been considered. The shell
material has a Poisson's ratio of 0.3 and Young's modulus of 68.95 N/mm?; all shell
boundaries are hinged. Because of double symmetry, only a quarter of the shell has been
analyzed (with 3 % 3 mesh size; Fig. 5) and the results obtained using STATA code are
quoted in Table 5.

Table 5

Central deflection (mm)

Model 1 -56.03
Model 2 -60.19
Model 3 -55.38
Model 4 -56.10

Fig. 5. Finite element discretization of one quarter of the shell

CONCLUDING REMARKS

Note that the above example is also fairly thick shell. Hence, if a concentrated load
and the degenerate solid or Reissner-Mindlin shell formulations are used (as it is a very
common practice indeed), one can not speak about the finite value of the displacement
under the load (s. for example [19], either in linear or nonlinear analyses.

However, in this paper we were interested primarily in pointing out one example of
uncritical substitution” of the notion of a spherical surface with a surface having only one
spherical point (a rotational paraboloid); however small the difference between the
various models (s. Fig. 6), i.e. between the corresponding central deflections (s. Table 5),
their comparison is, in principle, unacceptable.

Finally, we emphasize that only recently we have encountered the paper [16], where
two models of the spherical shell have been distinguished and analysed3, as well the

2 Still present in the literature (s., for example, [15].
* The first model ("vertical cutting") corresponds to model 3, and the second one ("pyramid cutting") to Model
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thesis of Ma [17], where we found confirmation for our precaution during model validity
verification for shallow spherical shells with square planform ([17], p. 109: "For this
problem there is a conflict in the current literature concerning the dimensions in the
structure model.").

Fig. 6. Mesh of quadrilateral elements for one quarter of the shell (Model 1 - Model 4)

REFERENCES

Leicester, R.H. Large elastic deformations and snap-through of shallow doubly-curved shells, Ph.D.
Thesis, Dept. of Civil Eng., University of Illinois, Urbana (1966)

Leicester, R.H. Finite deformations of shallow shells, Proc. Am. Soc. Civil Eng. 94 EM6, 1409-1423
(1968)

Batoz, J.L., Chattopadhyay, A. and Dhatt, G. Finite element large deflection analisis of shallow shells,
Int. J. Num. Meth, Eng. 10, 39-58 (1976)

Matsui, T. and Matsuoka, O. 4 new finite element scheme for instability analysis of thin shells, Int. J.
Num. Meth. Eng 10, 145-170 (1976)

Berkovi¢, M. Thin shell isoparametric elements, Proc. 11 World Congress on Finite Element Methods,
Bournemouth (1978)

Berkovi¢, M. Thin shell analysis, Advanced Topics and New Developments in Finite Element Analysis,
MARC Analysis Research Corporation (1979)

Bathe, K.-J. and Bolourchi, S. 4 geometric and material nonlinear plate and shell element, J. Comput.
Struct. 11, 23-48 (1980)

Carnoy, E. Postbuckling analysis of elastic structures by the finite elemet method, Comp. Meth. Appl.
Mech. Eng. 23, 143-174 (1980)

Parisch, H. Large displacements of shells including material nonlinearities, Comp. Meth. Appl. Mech.
Eng. 27, 183-214 (1981)

Sacharov, A.S. et al. Finite Element Method in Mechanics of Solids, Vyshcha shkola - VEB
Fachbuchverlag, Kiew - Leipzig (1982) (in Russian)

Surana, K. S. Geometrically nonlinear formulation for the curved shell elements, Int. J. Num. Meth. Eng.
19, 581-615 (1983)

Dvorkin, ENN. On nonlinear finite element analysis, Ph. D. Thesis, Massachusetts Institute of
Technology, Cambridge (1984)

Dvorkin, E. N. and Bathe, K.-J. 4 continuum mechanics based four-node shell element for general
nonlinear analysis, J. Eng. Comput. 1, 1, 77-88 (1984)

1. It should be noted that the reference in [16], concerning the spherical shell example, is made to paper [11].



928

14.

16.

17.

18.

Z. DRASKOVIC, M. BERKOVIC

Berkovi¢, M. and Draskovi¢, Z. Structural analysis sofiware for microcomputers, Proc. Conference of
Engineering Software for Microcomputers, Venice (1984)

Chan, H.C. and Chang, W.C. Geometrically nonlinear analysis of shallow shells using higher order finite
elements, J. Comput. Struct. 31, 3, 329-338 (1989)

Hsiao, K.-M. and Chen, Y.-R. Nonlinear analysis of shell structures by degenerated isoparametric shell
element, J. Comput. Struct. 31, 3, 427-438 (1989)

Ma, H. Development of a geometrically nonlinear shell element by assumed strain methods, Ph. D.
Thesis, Asian University of Technology, Bangkok (1990)

Morris, A. J. An approach to the validation of finite element codes, BENCHmark 14-20 (Feb 1992)
Babuska, 1. and Oden, J. T. Benchmark computation: What is the purpose and meaing?, 1. A. C. M.
Bulletin 7, 83-84 (1992)

JEDNO ISKUSTVO U PROVERI VALJANOSTI MODELA
PRI ANALIZI SFERNE LJUSKE
METODOM KONACNIH ELEMENATA

Zoran Draskovié, Mladen Berkovid

U radu je analiziran primer sferne ljudske, koji se vise od deset godina koristi u testovima iz

nelinearne analize konacnim elementima. Medutim, rezultati proracuna se, po pravilu, porede sa
analitickim rezultatima koji se zapravo odnose na ljusku (rotacioni paraboloid) sa samo jednom
sfernom tackom.

Kljuéne reéi: Valjanost KE modela, sferna ljuska, ljuska sa sfernom tackom.



