Vol.2, No 9, 1999 pp. 903-920
UDC: 518.12 532.12 539.3
ON THE MAIN PROPERTIES OF THE PRIMAL–MIXED
FINITE ELEMENT FORMULATION
Mladen Berković, Dubravka Mijuca
Faculty of Mathematics, University of Belgrade, Studentski trg 16, P.0. Box 550,
11000 Belgrade, Yugoslavia
e-mail: dmijuca@matf.bg ac.yu
Abstract. In the present paper the main properties of the coordinate independent finite element primal–mixed formulation based on the stationary Reissner's principle, having both the displacement and stress boundary conditions exactly satisfied and solvable by direct Gaussian elimination procedure, are presented. From the presented numerical results it can be concluded that the proposed procedure is easy for implementation, stable even in the presence of singularities and more efficient, in the sense of the execution time needed for the prescribed accuracy, than classical displacement finite element method.

GLAVNE OSOBINE PRIMALNO-MEŠOVITE FORMULACIJE
U METODI KONAČNIH ELEMENATA
U radu se prikazuju glavne osobine primalno-mešovite sheme u metodi konačnih elemenata u elastičnosti, kao što su rešivost, stabilnost i ponašanje u prisustvu singulariteta. Takođe, prvi put se pokazuje da je primalno-mešoviti četvoročvorni Taylor-Hood-ov konačni element QC4/9 stabilan.