Vol.2, No 9, 1999 pp. 903-920
UDC: 518.12 532.12 539.3
ON THE MAIN
PROPERTIES OF THE PRIMAL–MIXED
FINITE ELEMENT
FORMULATION
Mladen
Berković, Dubravka Mijuca
Faculty of Mathematics, University of
Belgrade, Studentski trg 16, P.0. Box 550,
11000 Belgrade, Yugoslavia
e-mail: dmijuca@matf.bg
ac.yu
Abstract. In the present paper the
main properties of the coordinate independent finite element primal–mixed
formulation based on the stationary Reissner's principle, having both the
displacement and stress boundary conditions exactly satisfied and solvable
by direct Gaussian elimination procedure, are presented. From the presented
numerical results it can be concluded that the proposed procedure is easy
for implementation, stable even in the presence of singularities and more
efficient, in the sense of the execution time needed for the prescribed
accuracy, than classical displacement finite element method.
GLAVNE OSOBINE
PRIMALNO-MEŠOVITE FORMULACIJE
U METODI KONAČNIH
ELEMENATA
U radu se prikazuju glavne osobine primalno-mešovite
sheme u metodi konačnih elemenata u elastičnosti, kao što su rešivost,
stabilnost i ponašanje u prisustvu singulariteta. Takođe, prvi put se pokazuje
da je primalno-mešoviti četvoročvorni Taylor-Hood-ov konačni element QC4/9
stabilan.