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AGING CREEP DYNAMIC STABILITY - MATRIX EQUATION
UDC 532.135 621.3.016.352

Vera B. Lazié¢

Faculty of traffic and transport engineering, University of Belgrade
Vojvode Stepe 305, Belgrade, Yugoslavia

Abstract. The paper deals with the matrix equation of dynamic stability of a curved rod
of an aging linear viscoelastic material. The creep function is assumed to be any test
function. A known method of integral equations is used as a method that produces the
results under very general assumptions about curved rods and external loads As a
special case the known matrix equation of dynamic stability of elastic systems is
obtained.

INTRODUCTION

Consider a curved rod under very general assumptions with respect to the form of the
axis, the distribution of the masses, stiffness, and loads, and with respect to the end
boundary conditions. An aging linear viscoelastic material is assumed.

The operator form of the uniaxial creep law may be formally written in the form

0=(t,1,) = E,R'(t, T)E(T, 1) ,
or )

£ =(1.19) =~ F'(6,DO(T.1o).
EO

where O = (t,t)) = stress; &(¢,T) = strain; Ej,= instantaneous elastic modulus; 7, T and

0 = time; ¢, = time of the first load application.
The known operator expressions are

R'(t,0)F'(8,T) = F'(1,0)R'(8,7) =/'(£,7), 2)
(see Appendix).

For an investigation of dynamic stability the following distributed external load is
introduced

a5 (5,1,9) =0 (1,1)qy, () + B (6.1)TUE o) (), A =u,v, 3)
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having the radial (A =u) and the tangential (A =v) direction, a'(t,ty) and B(t,%,) =
dimensionaless load parameters, T(%,f) = periodic function, s, S = coordinate along the
curved rod axis. It is assumed that the load (i) does not change, (ii) changes its direction
during the curved rod deformation, i.e., it is assumed that the load is of a "gravitational"
or a "hydrostatical" kind.

The additional bending moments which arise during the deviation of the axis from the
initial position can be taken into account by introducing and additional load. For a
"gravitational" kind it is

g5 (51,1) = No ()8 (1, D0(s, T.1) + B' (L DIN, (5, T, 16 )0 (5, T 10)], “4)

representing distributed moments, while for a "hydrostatical" it is

gl (s,1,t) = No ()T (1, DK(5, T, 2g) + B (6, DIN, (5, T, 1)K (5, T, )],

~ 5
qgv(s’t9t0) = TO(S)a'(taT)K(SaT’ tO) + B'(I,T)[T[(S,T, tO)K(SaT’ tO)] 5 ( )

representing distributed forces in the radial and tangental direction, respectively N,(s) and

N(s,T,ty) = axial forces; Ty(s) and T(s,T,fy) = shear forces; §(s,T,z)) = angle of rotation of

the tangent with respect to the axis; k(s,T,4)) = change in the curvature of the axis. The

known expressions are

Ou(s,t,ty) N v(s,t,ty)
Os r(s)

¢(Sat’t0): (6)

and
_ aq)(S’tatO)

K(s,t,tp) = %

(7
where u(s,T,t)) and v(s,T,4)) = radial and tangential displacements of an arbitrary point of
the axis, 7(s) = radius of the axis curvature [1][2].

Following the nature of the material accepted the load parameters in Eq (3) are time
functions and in Eqgs (4) and (5) Boltzmann's principle is applied.

The inertia forces are

0%u(s, .1, .
Giu (5.1,10) = =m(s) —E, - ) = —(s)i(s 1.1y,

» ®)
V(Sytat()) _
2

qiv(svtatO):_m(S) —_m(S)\.}(S,[,IO),

where m(s) = mass per unit length.

For a more extensive investigation of dynamic stability of a curved rod it is expedient
to use a method of integral equations.

The influence function Kj,(s,S,z,7) refers to an aging linear viscoelastic curved rod.
The first index denotes the displacement sought (A = u,v) and the second denotes the unit
load (w = u,v,0). It can be shown that

Ky (5,8,,0) =F (t,DK; (5.5), 9)

where Ky (s,8) = influence function of a corresponding elastic curved rod.
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On the bassis of the Boltzmann's principle the displacements u(s,t,,) and v(s,t,t),
denoted by Z)(s,t,ty) for A = u, v, due to distributed loads ¢,,(s,T,t), for w = u, v, ¢, can be
obtained from

Zy(s,t,ty) = F' (t,T)ZJ’KfW (5,98)q,,(S,T,t5)dsS . (10)
w L

Finally, the integral equations of dynamic stability can be created when the
expressions for the additional load and the inertia forces are substituted into Eq (10),
containing the usual assumptions applied when the dynamic stability of an elastic rod is
investigated [1].

MATRIX EQUATION OF A "GRAVITATIONAL" LOAD

Consider a "gravitational" load Eq (4) and form the system of homogeneous integro-
differential equations

u(s,t,ty) + F' (, T)J'Klfu (5, 8)m(S8)i(S,1,4,)dS +
L

= F'(L D[ K (s, S)m(S)i(S, Tt S =
L

11
- F'(1,0)d'(6,7) [ K (5, SINo(S)O(S. T, )dS = (1
L
- F'(1,0)B'(8,T) [ Kip (5, SIN, (S T,16)0(S, T.10)dS =0,
L
v(s,t,t,) + F'(,7) [ Kb (5, )m(S)ii(S, T,10)dS +
L
-F'(t,7) [ Ky (5. S)m(S)F(S, T, )dS ~
L (11b)

- F'(t,0)d'(8,7) [ K1 (5. S)NG(S)O(S.T.10)dS ~
L

= F'(1,8)B' (B D[ Ky (5, SIN, (S, T.16)9(S. T, )dS =0.
L

Keeping in mind Eq (6) we can see that the above equations are not independent. For
creating the matrix equation of dynamic stability it is enough to consider one of them
only. Let us keep our attention on the first equation.

Leaving out the detailed derivation which is basically analogous to that for an elastic
curved rod, we cite only the main ideas.

Assume that the solution of a problem concerning the free vibrations of an elastic
curved rod is known, i.e., that the system of eigenfunctions Uy(s) and V(s) are known and
that they constitute an orthonormal system.

(12)

U,(sU +V,(s)V, ds =90 o) _D Ik
{m(s)[ 1 (OU () + V(s (s)]ds = O, //c_H =k
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The corresponding eigenvalues 0.),2 are also known. The kernels, i.e., the deflection
influence functions can be expressed in terms of eigenfunctions by

Kiu(5.5)= 5 U ()U/(S).

7 11 (13)
Ky (s,9) = ZFU,(S)V,(S),

[

and
Kiy(5.8)= T U )D,(S), (14)
T W
where
_dUL(s) | Vi(s)
D, (s) = = + o) . (15)

In the series

u(S’t’tO) = Zﬁ(t’IO)UI(S)’
i

(16)
V(S,t,to) = z ](/(t7tO)V'/(S)’
7
and
¢(S’t7t0): Zﬁ(tatO)q)l(S)’ (17)
7
the time functions f/(#,7) are unknown functions.
Concerning the convergence of the series above see [1].
Following the well known procedure the matrix elements can be found
1
af = [NoO® ()P, (5)ds,
() 1 (18)
B (T10) = —5 [N, (5, T10)®; ()P, (s)ds
w7
and
1
e =5 O, (19)

d

Introduce the matrices 4%, B%(t, t,) and C composed of the elements in Eqs (18) and
(19)
A8 =|| a[i ||n,n > Bg(T’tO) :” b;/gc (T9t0) ||n,n (20)
and
c :” Clie ||n,n (21)

representing a diagonal matric, a unit matrix E as well as the n-dimensional vector

S (@:10) =l fit.10), f2(t,20)5es 1, (8, 10) | (22)
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Then we arrive at the matrix equation

Ef (1,ty) + CF'(t,7) f (1,8,) — ASF'(1,0)d'(6,T) £ (T, 1) =

o 23)
—F'(t,0)B'(8,1)BE (T,1) £ (T,1,) = 0.

MATRIX EQUATION OF A "HYDROSTATICAL" LOAD

For a "hydrostatical" load, Eq (5) is used to form the following system of
homogeneous integrodifferential equations

u(s,t,t) + F'(1,7) [ Koo (5, $)m(S)ii(S,T,10)dS
L
+F'(1,71) [ K (5, S)m(S)i(S, T,15)dS
L
- F'(t,0)8'(8,7) [ Ko (5, SN (S)K(S, T, )dS
- ‘ (24a)
= F'(1,8)3' (8, D[ K, (5, )Ty (S)K(S, T. 19 )dS
L
- F'(1,0)B'(6,T) [ K (5 SN, (8. T, 10 )K(S. T,y )dS
L

- F'(1,0)p'(6,7) [Ki (5. )T,(S, T 1)K (S, T g)dS =0,
L

vu

V(s,t,15) + F'(1,7) K, (5, S)m(S)ii(S, T, 19)dS
L

+F'(t,7) [ K (5, S)m(S)¥(S, .19 )dS
L

- F'(1,0)d'(8,7) [ Kb (5, S)No (SK(S, T,10)dS
- t (24b)
~ F'(,8)8" (0, D K, (5, )Ty (SK(S, T.10)dS

L
- F'(t,0)B'(6,T) [ K (5. SIN, (S, T, 1 )K(S, T, )dS

L
- F'(1,0)B'(6,T) [K3 (5, S)T, (S, Tu1g)K(S, T, )dS = 0.

L

Substituting Eqgs (13), (16) and
K(s,T,29) = ) fi(T,2)K,(s), (25)
7

where
o, (s)

K,(s)=~- s

(26)

see Eq (15), we obtain the matric elements
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af = [N U () + Ty () ()
Wz

27)
1
bik = — [IN, (. T 1)U () + T, (. T 1o Vi (9IK ()
(s
and Cy, Eq (19), i.e. the matrices
A" ag .. B"(Tte) = b (Ttg) |l » (28)

and C, Eq (21), as well as the n-dimensional vector f, Eq (22). Finally, we develop the
matrix equation

Ef (t,ty) + CF'(6,0) f (T,15) = A"F" (£, 0)d" (8,1) £ (T, 1) 29)
- F'(t,0)B'(8,1)B"(1,1,) f(1,1,) = 0.
UNIQUE FORM OF MATRIX EQUATIONS

The matrix equations concerning a "gravitational" and a "hydrostatical" kind of the
external load, Eqs (23) and (29), differ only in elements of matrices 4° and 4" B%(1,t,)
and B"(1,t,). They can be written in a unique form

Ef (t,1,) + CF'(1,1) f (T,£y) — AF" (¢, 0)d" (8, T) £ (T, 1)
- F'(t,0)B'(8,1)B(T,t0) f (T.£5) = 0

where 4 = A%, A" and B(1,t,) = B%(1.t,), B"(1.ty). After simple transformations, using Eq
(2), it can be written in the form.

Cf (T,t0) +[ED'(1,T) = AB'(1,7) - B'(8, 1) B(T, 1)1/ (T, 7o)
—E[I'(t, ) - R'(t, D]/ (1,4)) =0,

(30)

€20

keeping in mind that the elements of the matrix B(T,%,) are connected with a periodic
component of the external load, Eq (3).
Consider special cases of the matrix equation of dynamic stability. When a'(t,T) =0,
B(t,T) =0 it gives
Cf (t,10) + ER'(,1) f (T,15) =0, (32)

i.e., the matric equation of free vibrations is obtained. When B"(t,T) =0 and when the
inertia forces are omitted it gives

[EL'(1,T) = A& (1, D) (T, ) = E[1 '(t,T) = R'(t, D]/ (T,£,) =0, (33)

i.e., the matric equation of static stability is obratined. The equations above refer to an
aging linear viscoelastic curved rod.

Consider a linear elastic material as a special case of an aging linear viscoelastic
material. Then
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R(t,v)=1't1), ie, F'(,1)=1'(t1,)=0. (34)
The load parameters are time-independent, i.e.,
aen=aT'@eD, BED=pT0, (35)

and the coefficients in Eqs (16), (17) and (25) do not depend on the parameter to, i.e.
fi=/(¢). Then Eq (33) becomes

Cf(O)+[E-a"A-B BW1f () =0, (36)

representing the well-known matric equation of dynamic stability of an elastic curved
rod.

CONCLUSIONS

A method of integral equations produces the results under very general assumptions
about the construction and the character of the external load. A matrix equation of
dynamic stability depends on the rheological properties of material: for an elastic system
it is a differential equation while for an aging linear viscoelastic system it is an integro-
differential equation. A form of a rod axis and the other trait of a construction determine
the matrix elements only.

APPENDIX

The linear integral operator 5'(t, T) is associated to a function G(¢,7) (G(£,T) = 0 for
t <T7). It is defined for any function U(#,T), T2 ¢,

1(t,7) = j‘G(t, B)U(8,T)d0.

Introduce
G'(1,1) = %,
P =H-1) = % for 1>
for t<T1
G'(t,1)=8(t-T1),

where H(z— 1) = Heaviside step function, d(t — T) = Dirac function. A unit operator
['(t,T) plays the role of unity in operator algebra
The integral of the function G'(#,7) is defined by
£0G

G't,)=G"1" :J’%G)H(e -0d0=G(t,1)-G(t,T), G't,T)£['(1,T), T2,

T
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F'(1,7) = creep function
R’(1,7) = relaxation function
F'(1,T) = creep operator

R'(¢,7) = relaxation operator
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DINAMICKA STABILNOST VISOKOELASTICNIH
SISTEMA SA STARENJEM - MATRICNA JEDNACINA

Vera B. Lazié¢

U radu je izvedena matricna jednacina dinamicke stabilnosti krivog Stapa od linearno
viskoelasticnog materijala s osobinom starenja. Pretpostaviljena je opSta funkcija puzanja.
Primenjen je poznati metod integralnih jednacina i tada rezultati obuhvataju krive Stapove i
spoljno opterecenje razlicitih karakteristika. Kao specijalan slucaj dobijena je poznata matricna
Jjednacina dinamicke stabilnosti elasticnih sistema.



