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Abstract. The present study deals with the problem of the combined torsional-lateral
vibration of beams with open monosymmetric cross-section under the effect of a moving
vehicle. The formulation presented is applied on a simply supported beam excluding
damping, but without particular additional mathematical difficulties it can be also used
for the relevant dynamic analysis of continuous beam structures including energy
dissipation. After examining in detail the free vibration of the beam, the moving vehicle
is represented not only as a constant load moving with constant velocity across the
span, but as a two-mass spring vehicle model and the corresponding forced motions are
dealt with, using modal analysis in conjunction with approximate integration
procedures and numerical schemes.

1. INTRODUCTION

The linearized as well as nonlinear vibration analysis of beams or beam-like structural
elements has been and continues to be the subject of numerous researches, since it
embraces a wide class of problems with immense importance in engineering science.
Depending on the assumptions adopted, the type of analysis used, the kind of the loading
or excitation and the overall beam characteristics, a variety of different approaches have
been reported in the literature and a great number of both theoretical and experimental
findings are related to beam dynamics. In particular, studies dealing with the 3D motions
of beams have revealed the dominant role of nonlinear modal coupling due to the
exchange of energy between torsional and (in-plane and out-of-plane) flexural motions
[3-5,7], leading to interesting primary and combination resonance phenomena [6,20], not
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predictable by linear theory. Moreover, vehicle-induced vibration of bridges and other
structures that can be simulated as beams and the effect of various parameters, such as
suspension design, vehicle weight and velocity, damping, matching between bridge and
vehicle natural frequencies, deck roughness etc., on the dynamic behavior of such
structures have been extensively investigated by a great number of researchers [2, 9-12,
14-19]. The whole matter will undoubtedly remain a major topic for future scientific
research, due to the fact that continuing developments in design technology and
application of new materials with improved quality enable the construction of lighter and
more slender structures, vulnerable to dynamic and especially moving loads.

To the knowledge of the authors however, only a limited number of works refer to the
flexural-torsional vibration of beams under vehicular loading, starting from the pioneer
work of Heilig [13]. At this point one must quote the paper by Chatterjee et al [2], where
a more detailed reference on the foregoing problem can be found.

The present work deals with the derivation of equations of the combined lateral-
torsional motion of a simply supported monosymmetric open cross-section beam, under
vehicular loading and presents solution techniques, based on modal analysis and
approximate numerical schemes; damping is not accounted for in the whole procedure,
but the proposed methodology can be easily extended to multi-span beams including
energy dissipation, without the need to overcome severe mathematical obstacles.
Numerical results based on this theoretical formulation and corresponding discussion will
be presented in a companion paper due.

2. MATHEMATICAL FORMULATION

2.1. Free vibration

Let us consider at first the free torsional-lateral vibration of a simply supported beam,
made of a homogeneous, linearly elastic material with an open cross-section and only one
symmetry axis, as shown in Fig. 1, where also the structure geometry and the
corresponding sign convention are depicted. The differential equations governing the
motions under consideration, excluding damping, are given by the following set [3, 4, 10,
13]:
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where the prime denotes differentiation with respect to x, while the dot with respect to
time t. The cross-sectional and material properties as well as displacement components
involved in the above equations are defined as:

Jy, Jz moments of inertia with respect to the principal axes y and z, Jd Saint-Venant
torsional moment of inertia, E and G elasticity and shear modulus respectively, υ and w
the deformation of gravity center S along axes y and z, ΘM the polar moment of inertia of
the cross-section mass, m is the beam’s mass per unit length, θ the rotation of the cross-
section and CS the warping coefficient with respect to S.
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Fig. 1. Geometry, properties and sign convention of a simply supported beam
with open monosymmetric cross section.

In this manner, from Eqs. (1), it is evident that the vertical eigen-vibration is
independent form the horizontal flexural and torsional ones, which are related to a
common modal amplitude. Thus, applying modal analysis, one may comprehensively
write:
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Consequently, the expression of the in-plane lateral dynamic deflection w(x,t) is given
by the following relation
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On the other hand, combining the last two coupled equations given in (1) we get
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and since zMSM JzCC 2−=
after cumbersome elaboration, we reach to an 8th order differential equation with respect
to the shape function of the rotation θ(x,t), outlined below:

0)2()4()6()8( =ϑε+ϑδ+ϑγ+ϑβ+ϑα (5)
where
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which yields the latter characteristic algebraic equation

02468 =ε+δρ+γρ+βρ+αρ (7)

In the sequel, the expression valid for the shape function of the rotation )x(ϑ  is in
series form as follows:
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where ai ± jbi and ± rλ are the complex conjugate and real roots of (7) respectively, with
ki and kλ being appropriate coefficients sought, provided that i + λ = 8. The boundary
conditions associated with Eq.(5) are
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Substituting expressions (8) into Eq.(7) and taking into account the aforementioned
boundary conditions, we reach to a linear homogeneous system of eight equations with
respect to coefficients kq (q = 1÷8). For a nontrivial solution the corresponding
determinant is set equal to zero, leading to the so-called frequency equation. Thus, one
may write
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where Ψn and Zn are the shape functions of the rotation and out-of-plane deflection
respectively, to be analytically determined or at least properly approximated.

In as much as, it can be rather easily proven that the orthogonality conditions
governing the free motion considered are as follows:
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2.2. Forced motion under a constant moving load acting eccentrically

For this particular problem, schematically depicted in Fig. 2, the corresponding
equations of motion take the form
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Fig. 2. The simply supported beam of Fig. 1, under the passage of a constant load
moving with constant speed across the span eccentrically.

and the desired solution can be written in modal form as
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where the amplitudes Tn(t) and Φn(t) are the solution of the system
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yielding according to Duhamel the following purely analytical expressions
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2.2. Forced motion under a two-mass spring vehicle model acting eccentrically

Using the geometrical relations resulting from the configuration, which can be
perceived from Fig. 3, one may write

)( PAwzkzM −−= (16)
and





αϑ+α=
−+−=

)()(
00

eww
wmgmzMMgP

PA

PAz (17)

Fig. 3. The simply supported beam of Fig. 1, acted upon eccentrically by a two-mass
vehicle model moving with constant velocity.

Seeking in the same manner a series solution as in the former problem, given in (13)
and after some elaboration it is found that the formulation cannot lead to an analytical
solution; this is due to vibration interactions of strongly nonlinear nature, although a
mainly linearized approach is adopted. Moreover it is evident that
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Considering a solution of the form
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Using once again the Duhamel solution of (20), evaluating the 1st and 2nd derivative of
Πn with respect to t and taking into account the lemma of integral calculus dictating that
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the final product of a lengthy manipulation is the system of D.E. of motion that follows
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This system can alternatively be written as
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where
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and is associated to the set of initial conditions given by:
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3. SOLUTION TECHNIQUES

3.1. Free motions

From the preceding theoretical formulation it is more than perceivable that the
problem of primordial concern is to determine the highest possible range of the
eigenfrequencies 2

nσω  , i.e. to solve the frequency equation resulting from (7) and (8) and
the use of boundary conditions (9). The analytical form of this equation and moreover the
values of the coefficients of the corresponding 8th order determinant (being in fact
functions of ωσn) can only be treated via reliable symbolic mathematics software, since
not only the expressions are extremely complicated and lengthy, but the elimination of
not desired solution combinations (exclusion of negative real and complex roots) requires
repeated manipulations of the aforementioned expressions. In addition to the above, after
elimination is complete, one must then compute the value of the related 8th determinant, a
task that must be performed several times, before the fundamental eigenfrequency is
properly approximated, with the accuracy sought. Recapitulating, the solution technique
for evaluating ωσn consist of the following primary steps:

a. Choose a first approximation of ωσn being close to the minimum of the
corresponding out-of-plane flexural and torsional ones, with the motions
considered uncoupled.

b. Perform symbolic manipulations and eliminations - form the 8th order system.
c. Compute the value of the determinant Δ(ωσn).
d. Repeat steps a, b and c using ωσn + h, yielding Δ(ωσn + h).
e. Apply the classical method of Bolzano until a root is found.

Further details and more analytical presentation of the whole method and its inherent
capabilities as well as a variety of numerical results will be given in the companion paper
due.

3.2. Forced motions

After the evaluation of the desired range of eigenfrequencies and corresponding shape
functions has been performed, there exist no mathematical difficulties in dealing with the
forced motions described throughout Eqs.(13)-(15), since the solutions are purely
analytic. This is not the case however for the combined torsional-lateral vibration of the
beam due to the passage of a two-mass spring vehicle model acting eccentrically, because
in this case the differential equations with respect to the modal amplitudes Φn(t), Tn(t) and
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Πn(t) are coupled and strongly non-linear, and hence analytical solutions are not
accessible. Thus, one must resort to approximate numerical integration procedures and
tackle the problem via a straightforward dynamic analysis. In doing this, after introducing
the quantities
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and consecutive substitutions and elaboration, we finally reach to the following system of
2nd order differential equations with respect to the aforementioned amplitudes.
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This can be treated numerically as a system of six (6) first order O.D.E.s; the method
employed herein - with results presented in the companion paper due - is the specially
modified 7th order Runge-Kutta-Verner integration scheme, that produces reliable long-
term results, since it combines efficiency, low programming effort, usage of minimal
computer time and a very small error O(ћ7), where ћ is the corresponding time step.
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SPREGNUTE TORZIONO-BOČNE OSCILACIJE GREDE
OPTEREĆENE VOZILOM:

I FORMULACIJE I TEHNIČKA REŠAVANJA
D.S. Sophianopoulos, G.T. Michaltsos

Predstavljeni su rezultati izučavanja problema spregnutih torziono-bočnih oscilacija greda sa
otvorenim monosimetričnim poprečnim presekom, pod dejstvom pokretnih vozila. Predstavljena
formulacija je primenjena na prosto oslonjenu gredu, ali bez posebnih dodatnih matematičkih
teškoća može biti upotrebljena za relevantna dinamičke analize kontinualnih grednih struktura
uključujući i energiju disipacije. Posle detaljnog ispitivanja slobodnih oscilacija greda, pokretno
vozilo je predstavljeno ne samo kao konstantno opterećenje pokretano konstantnom brzinom duž
raspona, nego i kao model vozila od dve mase spojene oprugom i odgovarajućim prinudnim
kretanjem, koristeći modalnu analizu sa aproksimacionim integralnim procedurama i numeričkim
šemama.


