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Abstract. In this paper, the stability robustness of particular class of linear systems in
the time domain, is addressed using the Lyapunov approach. The bounds of
unstructured perturbation vector function, that maintain the stability of the nominal
system with attractivity property of subclass of solutions are obtained both for regular
and irregular linear singular systems.
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1. INTRODUCTION

Linear singular systems are those systems whose dynamics is governed by a mixture
of differential and algebraic equations. These systems are known as generalized,
descriptor as well as semi-state systems. They naturally arise in many practical
engineering disciplines and applications, such as electrical networks, aircraft dynamics,
robotics, optimization problems, feedback control systems, large-scale systems, as a
limiting case of singularly perturbed systems, etc. and in biology, economy and
demography.

The survey of updated results concerning different aspect of treatment of linear
singular systems and the broad bibliography on this subject can be found in the books of
Aplevich (1991), Bajić (1992), Campbell (1980, 1982), Dai (1989) and Debeljković et al.
(1996) and in the two special issues of the journal Circuit, Systems and Signal Processing
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(1986, 1989).
Physical systems are very often modeled by idealized and simplified models, so that

information obtained on the basis of such models is not always sufficiently accurate. This
makes motivation for investigation of robustness of examined system properties with
respect to the model inaccuracies.

Patel and Toda (1980) first reported the robustness bounds on unstructured
perturbations of linear continuous-time systems.

Yedavalli and Liang (1986) improved Patel’s result for linear perturbations with
known structure and proposed similarity transformation method to reduce robustness
bounds conservatism.

In the paper of Yedavalli (1986), the aspect of “stability robustness” is analyzed in the
time domain. A bound on the structured perturbation of an asymptotically stable linear
system is obtained to maintain stability using Lyapunov matrix equation solution. For the
special case of nominal system matrix, some other results have been also obtained.

Zhou and Khargonekar (1987) considered the robust stability analysis problem by
linear state-space methods. They derived some lower bounds on allowable perturbations
that maintain the stability of nominally stable system with structured uncertainty. It has
been shown that those bounds are less conservative than the existing ones.

Recently, Chen and Han (1994) using iterativity approach, derived new results in the
same area of interest for the linear system with unstructured time-varying perturbations.
In comparison with some existing methods, less conservative results have been obtained.

This was the short overview  of the problems related to continuous linear systems.
A general overview of results concerning the stability robustness problems in the area

of nonlinear time-varying singular systems can be found in Bajić (1992), while some
other similar considerations for linear singular systems are presented by Dai (1989).

In this paper, the existence of solution of both regular and irregular singular systems,
that are attracted by the origin of the state space, is examined. A weak domain of
attraction of the origin consisting the points of the state-space which generate at least one
solution convergent to the origin, is estimated using Lyapunov’s second method.

It has been shown that the same results can be efficiently used for determining
quantitative measures of robustness for such class of system. In that sense, these results
represent natural extension of results presented in Debeljković et al. (1994.a, 1994.b), as
well as the application of results derived in Toda and Patel (1980), Yedavalli (1986) and
Zhou and Khargonekar (1987) to the linear singular systems.

2. PRELIMINARIES

Consider the linear singular system represented by:

,)(,,),( 00 yyyy =∈= × tAEtAE nmR (1)

where y ∈  R
n
 is the phase vector (i.e. generalized state–space vector). The matrix E,

when m = n, is possibly singular. When this is the case, then rank E = p < n, nullity
E = n – p = q. If the matrix E is invertible, then (1) can be written in the normal form as

( ) ( ), ( ) .y y y yt E A t t= =−1
0 0 (2)
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Behavior of solutions of (2) is very well documented in modern literature on this
subject. However, this is not the situation for the system (1), where m ≠ n or when m = n
with det E = 0.

Introducing a suitable nonsingular transformation TEQ, Dai (1989), or sometimes
just:

nnTttT ×∈= C),()( yx , (3)

a broad class of singular systems (1) can be transformed to the following form:

( ) ( ) ( ) ,x x x1 1 1 2 2t A t A t= + (4a)

0 x x= +A t A t3 1 4 2( ) ( ) , (4b)

 AT
A A
A A

ET
I

=








 =











1 2

3 4

0
0 0

,  , (4c)

where x(t) = [x1
T(t)   x2

T(t)]T ∈  R
n
 is a decomposed vector, with x1(t) ∈  R

n1, x2(t) ∈  R
n2,

and n = n1 + n2. The matrices Ai,  i = 1 … 4, are of appropriate dimensions. Comparing
(4) with (1), it is obvious that if m = n we consider the case when det E = 0. This
conclusion stems from the fact that det (ET) = det E det T = 0, and that det T ≠ 0. When
the matrix pencil (cE – A) is regular, i.e., when:

det (cE – A) ≠ 0,    c ∈  C, (5)

then solutions of (1) exist, and they are unique for so-called consistent initial values x0 of
x(t), and moreover, the closed form of these solutions is known. If A4 is regular, the
condition (5) is reduced to:

. 0))det((det)1(

))(det()(det

3
1

4214

21341

2

1

11

≠−−−=

=−−−
−

−
−

AAAAcI  A

A AcIAAAcI 
n

nn (6)

Let us denote the set of the consistent initial values of (4) by II. Also, consider the
manifold M ⊆  R

n
 determined by (4b) as M = ℵ ([A3  A4]), where ℵ (⋅)denotes the kernel

(null space) of the operator (⋅). For the system governed by (4), the set II of the
consistent initial values is equal to the manifold M, that is II = M. In other words, a
consistent initial value x0 has to satisfy 0 = A3x10 + A4x20, or in equivalent notation:

x0 ∈  II  ≡ M = ℵ ([A3 A4]). (7)
However, if :

rank [A3 A4] = rank A4 , (8)

then II = M = ℵ [A3  A4] and the determination of the II obviously requires no
additional computation, except those necessary to convert (1) into the form (4). Assuming
that rank A4 = r ≤ n2, it is clear on the basis of (7), that (n1 + n2 – r) components of the
vector x0 can be chosen arbitrarily to achieve no impulsive solutions of the system,
governed by (4). Note, also, that then rank A4 = r < n2, the uniqueness of solutions is not
guaranteed, Bajić et al. (1997), Debeljković et al. (1997).
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3. PROBLEM FORMULATION

Since the transformation (3) is nonsingular, the convergence of solutions y(t) of (1)
and x(t) of (4) toward the origin of (1) and (4), respectively, is an equivalent problem.
Thus, for the null solution of (4), we are going to investigate the weak domain of
attraction. The weak domain of attraction of the null solution x(t) ≡ 0 of (4) is defined by

S = {x0 ∈ R:x0∈  M, ∃ x(t,x0), 0||),(||lim 0 →
∞→

xx t
t

}.    (9)

We use the term weak because solutions of (4) need not be unique, and thus for every
x0 ∈  S there also may exist solutions which do not converge toward the origin. In our
case  S =  M =  II, and we may think of weak domain of attraction as of weak global
domain of attraction. Note that this concept of global domain of attraction used in the
paper, differs considerably with respect to the global attraction concept known for state-
space systems, in normal form (1).

Our task is to estimate the set S. We will use Lyapunov direct method to obtain the
underestimate Su of the set S (i.e. Su ⊆  S  ). Our development will not require the
regularity condition (5) of the matrix pencil (sE – A).

4. MAIN RESULTS

This section introduces a stability result which will be employed for the robustness
analysis. For the systems in the form (4), the Lyapunov-like function can be selected as

,0),()())(( 11 >== TT PPtPttV xxx (10)

where P will be assumed to be positive definite and real matrix. The total time
derivative of V along the solutions of (4) is then

)()()()()())(())(( 1222211111 tPAttPAttPAPAttV TTTTT xxxxxxx +++= . (11)

Brief consideration of the attraction problem shows that if (11) is negative definite,
then for every x0 ∈  II we have ||x1(t)|| → 0 as t → ∞. Then, ||x2(t)|| → 0 as t → ∞, for all
those solutions for which the following connection between x1(t) and x2(t) holds

x2(t) = Lx1(t),         ∀ t ∈  R. (12)

If the rank condition (8) holds, which implies II = ℵ [A3  A4], then there exist a matrix
L being any solution of matrix equation

0 = A3 + A4L , (13)

where 0 is null matrix of dimension the same as A3.
It is obvious that the solutions of (4) have to belong to the set ℵ ([L – In2]) as well as

potential domain of attraction is given by:

Su = {x ∈  R :  x(t) ∈  ℵ ([L   –In2])} ⊆  S. (14)

We are now in position to state the following result.



Lyapunov Stability Robustness Consideration for Linear Singular Systems: New Results 719

Theorem 1. Let (8) hold. Then, the underestimate Su of the potential domain S of
attraction of the null solution of singular system (4) is determined by (14) provided L is
any solution of (13) and (A1 + A2L) is Hurwitz matrix. Moreover, Su contains more than
one element.

Proof. If the rank condition (8) is satisfied, it follows that II = ℵ ([A3  A4]). Let L be any
solution of (13). Note that such L always exist when (8) holds. Select now
x0 ∈ℵ ([L  –In2]). This is consistent initial condition at t = t0 since

ℵ ([L  –In2]) ⊆  ℵ ([A3  A4]) = II .  (15)

Then solutions x(t, x0) of (4) that emanate from point x0 exist. To examine the
behavior of these solutions, the agregation function, defined by (10), is used. Now, we
employ (11) and (12) to obtain

)())())((())(( 121211 tLAAPPLAAttV TT xxx +++= , (16)

which is negative definite with respect to x1 if and only if

ΩT P + PΩ = – Q ,     Ω = A1 + A2L , (17)

where Q is real symmetric positive definite matrix. Hence V(x(t)), defined by (10), is
positive definite function and its total time derivative, along the solutions of (4) that
satisfy (12), is negative definite. So

lim || ( , )||
t

t t
→∞

→x1 0 0 , (18)

as long as x0 ∈ℵ ([L  –In2]). But (12) implies also

lim || ( , )|| lim || ( , )|| lim || || | | ( , )||
t t t

t t L t t L t t
→∞ →∞ →∞

= ≤ →x x x2 0 1 0 1 0 0 .  (19)

As ℵ ([L  –In2]) is not singleton, then there are solutions of (4) with the initial value

x0 ≠ 0∈  R 
n
 that converge toward the origin of phase space as t → ∞. Thus, Su has more

than one element.
This proof is based on the results firstly reported in Debeljković et al. (1997).

5. ROBUSTNESS OF ATTRACTION PROPERTY

To analyze robustness of attraction property of the phase space origin, let us consider
the perturbed system (1) which for this purpose can be represented in the following form:

( )E t A t t A t G tp p( ) ( ) ( ) ( ) ( ),y y f y y y= + = +  (20)

where the vector fp(t) represents model perturbation and matrix Gp is of appropriate
dimension.

To simplify formulation of the stability robustness results we first transform (20) to

( ) ( ) ( ) ( ) ( )x x x x1 1 1 2 2 1t A t A t G t t= + + , (21.a)
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0 x x x= + +A t A t G t3 1 4 2 2( ) ( ) ( ) , (21.b)

as it has been done with (1) to (4). G1 and G2 are matrices of dimension n1 × (n1 + n2) and
n2 × (n1 + n2) respectively, determined by the following expression

[ ] [ ]G G G G G G G T
G G
G Gp1 11 12 2 21 22

11 12

21 22

= = =








, , . (22)

Then we introduce the following assumption.

Assumption 1. Let L be matrix which satisfies (13) and let G2 ≡ 0, so that

G G
G G

t
G G t

t
G G L t G tL11 12

21 22

11 12 1

2

11 12 1 1
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 =
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 =
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 =









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x
x

x x
( )

( )
( )

( ) ( ) ( )
. (23)

Now we state results on robustness stability as follows.

Theorem 2. Let the rank condition (8) and Assumption 1 hold. Then the underestimate
Su of the potential domain of attraction of system (21) is given by (14), if one of the
following conditions is fulfilled

a)  ||GL||S < µ,     b) ||GL|| < µ,     c) |gLij| < µ/n1 , (24)

where gLij is the (i, j) element of matrix G, and

µ
σ
σ

= min

max

( )
( )

,
Q
P

(25)

and where 0>= TPP , is symmetric, positive definite, real matrix, being unique
solution of Lyapunov matrix equation

( ) ( ) ,A A L P P A A L QT
1 2 1 2 2+ + + = − (26)

for any real, symmetric, positive definite matrix Q. The set Su contains more than one
element. ||(⋅)|| and ||(⋅)||S denotes Euclidean and spectral norm of matrix (⋅) respectively
and σ(⋅)(⋅) corresponding singular value.

Proof. Let Lyapunov-like function candidate be chosen as in (10). Then, using
Assumption 1, equations (11) and (26), one can easily get

( ) .)()(2)()(2)( 11111 tPGttQttV L
TT xxxxx +−=  (27)

From (24.a) it is obvious that

||GL||S σmax(P) < σmin(Q) , (28)
as well as

||PGL||S ≤ ||GL||S σmax(P) . (29)

Moreover, Patel and Toda (1980):
σ min ( ) ( ) ( ) ( ) ( )Q t t t Q tT Tx x x x1 1 1 1≤ , (30)
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x x x1 1 1
2T

L L St PG t PG t( ) ( ) || || || ( )||≤ , (31)
so

x x x x1 1 1 1
T

L
Tt PG t t Q t( ) ( ) ( ) ( )< ,  (32)

and finally
− + <2 2 01 1 1 1x x x xT T

Lt Q t t PG t( ) ( ) ( ) ( ) ,  (33)

that is, 0))(( 1 <tV x , so 0||),(|| 01 →xx t when t →∞, as well as ||x2(t)|| for any x0 ∈  ℵ ([L
–In2]), since Su is not singleton. This ends the proof.

To prove (24.b) and (24.c) one has just to use

|| || || || | | ,
,

/

G G gL S L Lij
i j

n

≤ =










=

∑ 2

1

1 2
1

(34)

what ends the proof.

Theorem 3. Let the rank condition (8) and Assumption 1 hold. Then the underestimate
Su of potential domain of attraction of system (21) is given by (14), if the following
condition is fulfilled

[ ]| |
| |

,max
max

g
P ULij

S

= < ≡ε
σ

η1 (35)

where P satisfies the Lyapunov matrix equation given by:

( ) ( ) ,A A L P P A A L IT
1 2 1 2 2+ + + = − (36)

I being n1 × n1 identity matrix with U being n1 × n1 matrix whose entries are unity.
[(⋅)]S means symmetric part of matrix (⋅).

Proof. For the system of the form (4) the Lyapunov function candidate can be selected as

0,)()())(( 111 >== TT PPtPttV xxx . (37)

The total time derivative along the solutions of (4) is then

)()2)(())(( 111 tPGPGIttV L
T
L

T xxx ++−= . (38)

Let matrix Ψ be defined in the following manner

Ψ = εU, (39)

and suppose that the first condition of Theorem is fulfilled, i.e.,

| |
(| | )max

g
P ULij

S

= <ε
σ

1 .  (40)

Then, it is obvious that
σmax(|P|ψ)S < 1,   σmax(PGL)S  < 1, (41)

σmax[–(PGL)S ] < 1,   σmax[(PGL)S (–I)–1]S < 1, (42)

so, according to Lemma 1 (see Appendix), [–I + (PGL)S] is negative definite.
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Moreover, since

( )PG
G P PG

L S
L
T

L=
+
2

,  (43)

it is clear that the matrix )2( L
T
L GPGI ++−  is negative definite, as well as it is then

0))(( 1 <tV x , what had to be proved.
The analysis of this result is identical to that presented in the proof of Theorem 1 and

leads to the same conclusion.

Theorem 4. Let the rank condition (8) and Assumption 1 hold. Moreover, let the matrix
GL be defined in the following manner

G k GL i Li
i

m

=
=
∑

1

, (44)

where GLi are constant matrices and ki are uncertain parameters varying in some intervals
around zero, i. e., ki ∈  [–εi, + εi]. Then, the underestimate Su of potential domain of
attraction of system (21) is given by (14) when P satisfies the Lyapunov matrix equation

( ) ( ) ,A A L P P A A L IT
1 2 1 2 2+ + + = − (45)

and if one of the following conditions is fulfilled

a)  k
Pi

ei

m
2

2
1

1
<

=
∑ σ max ( )

, (46)

or

b) | | ( ) ,maxk Pi i
i

m

σ <
=
∑ 1

1

 (47)

or

c) | |
| |

, , , ... .

max

k
P

j mj

i
i

m
<









=

=
∑
1 1 2

1

σ
(48)

where Pi and Pe are given by

[ ]SLiLi
T
Lii PGPGPGP =+= )(

2
1 (49)

and
.][ 21 m

PPPPe = (50)

Moreover Su contains more than one element.

Proof. If one use (37) and (44), it is clear that

)()(2))(( 1
1

11 tIPkttV
m

i
ii

T xxx 









−= ∑

=
, (51)

is negative definite when
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σ max k Pi i
i

m

=
∑






 <

1

1 . (52)

k Pi i
i

m

=
∑

1

 can be transformed to

[ ][ ] [ ]k P P P P k I k I k I P k I k I k Ii i
i

m

k m
T

e m
T

=
∑ = =

1
1 2 1 2 1 2 (53)

so that

σ σmax

/

max( )P k k Pe i
i

m

i i
i

m
2

1

1 2

1= =
∑ ∑






 ≥







 , (54)

what means that when (46) is fulfilled, then (52) is also. Moreover

| | ( )max maxk P k Pi i
i

m

i i
i

m

σ σ≥








= =
∑ ∑

1 1

,  (55)

so when (47) is satisfied, then (40) is satisfied too. Finally, since











σ≥










σ≥










σ ∑∑∑

===

m

i
ii

m

i
ii

m

i
ij

j
PkPkPk

1
max

1
max

1
max ||||||max  (56)

is obvious, inequality (48) guarantees (52), what ends the proof.

5. NUMERICAL EXAMPLES

In order to illustrate the presented results, some suitable examples have been worked
out.

Example 1. Consider a singular system given by

0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

1 2 0 1
1 2 1 4
1 1 0 1
3 5 2 3

2 6 3 6
1 0 0 1
0 0 0 0
0 0 0 0



















=

− − −
− −
−
− −



















+

− −

















( ) ( ) ( ) .y y yt t

k k k k

t (57)

Since det (cE – A) ≠ 0 this is regular singular system.
Let us examine the behavior of this system according to the results obtained. Using

the transformation matrix

T =



















2 1 0 1
1 0 0 0
0 0 1 0
0 1 0 0

, (58)
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which is nonsingular since det T = 1, the system (39) can be transformed to

( ) ( ) ( ) ( )x x x x1 1 2
4 2

0 3
0 1
1 1

2 4 3 2
1 2 0 1

t t t
k k k k

t=
− −

−








 +

−







 +

− −







  (59.a)

0 x x=








 +











1 2
1 0

0 1
2 31 2( ) ( )t t (59.b)

Since the rank condition (8) is satisfied, one can find

L =
−











1 3
1 2

, (60)

from (13), and then

.S
1021

0121
)(:S 4R ⊆



























−−

−
ℵ∈∈= tu xx (61)

if conditions of Theorems 2, 3 or 4 are satisfied.
Let’s show that. Since

G G G L kL
G

= + =
−









≡
11 12

2 0

1 1
0 0

,  (62)

Assumption 1 is satisfied.
For Q = I, from (21) one can have

P PT=








 = >

1 3 0
0 1 2

0
/

/
, (63)

so that

| | | |
( )
( )

.min

max

g k Q
n PLij ≤ ≤ =

⋅
=

σ
σ1

1
2

1
2

1 (64)

The Theorem 3 gives better result. Namely,

|gLij| < 1.19 , (65)
since

[ ]
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(66)

To apply Theorem 4, one needs to find the following data

G k k GL L=
−







 = ⋅

1 1
0 0 1

(67)
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2
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1 2 48< ⇒ <
σ max ( )

| | . . (69)

Fig. 1 and Fig. 2 represent system trajectories for possible values of uncertain
parameter k.
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In the first case (Fig. 1), parameter k is chosen in such a way that condition of
Theorem 3 is satisfied, so the stability robustness of attraction property of origin is
proved. It can be shown that quantitative measures obtained by Theorem 3 are less
conservative than the others two, Zhou and Khargonekar (1987).

Second case (Fig. 2), shows that required property is not achieved, since the choice of
parameter k was not adequate.
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Example 2. Consider a singular system given by

[ ] [ ]( ) ( ) ( ) ( )x x x x1 1 2 11 1 3t t t G t= − + − − + (70.a)

0 x x=
−







 +

− −










1
1

1 1
1 11 2( ) ( )t t (70.b)

Since det (cE – A) = 0 for any c, this is a irregular singular system and solutions are
not unique.

The following results can be easily obtained

rank rank 
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
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1 2. (71)

.0,,
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L (72)

From (20) one can get

P
a

a= −
−

<
1

4
4,  (73)

in order to have P = PT > 0.
So
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Two different values of parameter a have been chosen and corresponding system
responses has been depicted in Fig. 3.

a) ])([; 8,5
20 nL ILGa −ℵ∈=−= x b) ])([; 10,5

20 nL ILGa −ℵ∈=−= x
Fig. 3.
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In the first case (Fig. 3.a), condition given by (56) is satisfied and system has required
property. In the second case (Fig. 3.b), GL is chosen to contradict (56) and system
response diverge.

6. CONCLUSION

Simple sufficient algebraic conditions are presented for testing the existence of
solutions of linear singular systems which converge toward the origin. The estimate of
weak domain of attraction is given.

It has been shown that, under some particular conditions, these results can be
efficiently used in checking stability robustness of the linear singular systems. In that
sense, they represent natural extension of the results derived earlier, for ordinary linear
systems.
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APPENDIX

Theorem A.1. System given by

))(,()()( tttAt xfxx += ,    t ∈  [t0, +∞[ (A.1)
is stable if

1
1 R),(,

)(max
)(min

||||
||),(|| +∈∀

λ
λ≡µ≤ nt

P
Qt

z
z

zf , (A.2)

where R is unique positive definite solution of Lyapunov equation

QPAPA TT 2−=+ , (A.3)

and where Q is some positive definite matrix.

Lemma A.1. The bound in (A.2) is maximum when the matrix  Q = I in (A.3), where I is
n × n identity matrix.

For proofs, see Patel and Toda (1980).

LJAPUNOVSKA ROBUSTNOST STABILNOSTI LINEARNIH
SINGULARNIH SISTEMA: NOVI REZULTATI

K. V. Ðurović, D. Lj. Debeljković, S. A. Milinković, M. B. Jovanović

U ovom radu razmatrana je osobina privlačenja nultog ravnotežnog stanja linearnog
singularnog sistema i pripadajuća osobina robusnosti u odnosu na linearne nestrukturne
perturbacije. Izvedene i dokazane teoreme predstavljaju znatno proširenje rezultata do kojih su
autori došli ranije, a istovremeno jasno ukazuju na široke mogućnosti primene postojećih rezultata
na analizu robusnosti stabilnosti razmatrane klase sistema.


