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Abstract. The balance laws  for multilayered shells is analysed. Using the Euclidean
group of transformation,  the equivalence between the balance laws and the Euclidean
invariance is demonstrated. An example is considered and extension of one of  these
balance laws is carried out for simple problems of plates theory.

1. INTRODUCTION

Conservation laws (or balance laws) have been the subject of considerable research in
recent years. One of these laws, the J-integral, has been applied extensively to the
fracture mechanics problems with much success. In this paper, we analyse similar type of
integrals for multilayered shells in the context of multidirector surfaces theory, based on
the assumption of piece-wise linearity od displacements field across the thickness. This
approach identifies each layer with a two-dimensional (2-D) array of material vectors so
that the shell is regarded as a surface endowed with n-director fields, n being the number
of layers. This strongly suggests the concept of a multidirector Cosserat surface.

Conservation laws for classical shells have been considered by Bergez and
Radenkovic [1], and Bergez [2] Lo [3] introduced path-independent integrals for
cylindrical shells and shells of  revolution. Studies made by Kienzler and Golebievska-
Herrmann  [4] show that conservation laws are derived from variational principle in the
context of higher-order shells theories. Based on the Naghdi's theory of thin shells,
Sedmak, Berković and Jarić  [5] have derived path independent integral for generally
shaped shells.

The aim of this paper is to derive conservation laws (or balance laws) using invariant
characteristic of variational principle in relation to the Euclidean group of transformation.
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Using Euclidean group of transformation, the equivalence between the conservation law
and the Euclidean invariance is demonstrated. As a consequence a novel result for the
conservation law (or the balance law) for multilayered shells has ben obtained. Finally,
one of the laws is used  as an example to illustrate its application.

2. EQUATIONS OF VARIATIONAL INVARIANCE

Let ξ= (ξi) ∈ Ri, i = 0, α, be the independent and φ = (φα)∈ Rα, α = 1, m, dependent
vector variables, describing the behaviour of material system under consideration.

We define now the following action integral

∫ ∫∫ ξ==φ
B RT

dYLLdSdtA )()( (1)

where L represents real scalar function of ξ, φ,φα, defined and differentiable for all values
of its arguments and Y = Y(ξ,φ,φα).

For the action integral (2,1), the small transformations of dependent and independent
variables are introduced as follows:
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where the quantities δξi = αi, δφ = b etc. are taken to be of infinitesimal order and η is a
small parameter.

Now a special form of Noether's theorem can be defined, which is used here to derive
the conservation laws (the proof of this theorem can be found on  [6]):

Noether's theorem:

If the fields φ satisfy the corresponding Euler-Lagrange equations E(L)φ = Q, then the
functional (1) remains infinitesimally inveriant at φ under the small transformations (2), if
and only if φ, satisfies
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where the vector m is defined as
i

ibm αφ−= , (4)

It was conveient to use abbreviated notation in eqs (3) and (4), suggested by Ericksen
[7]:

{φ1,φ2}  = { (a1,b1)(a2,b2)}  = a1a2 +b1b2

3. CONSERVATION LAWS FOR MULTILAYERED SHELLS

The starting point for conservation laws introduction is elastic multilayered shell
theory by Epstein and Glockner  [8], and Ericksen and Truesdell  [9]. Only the basic
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elements of the theory are given here and details can be found in  [8,9].
Let R = R(Xα) be the position vector of a generic point of the reference surface S of a

shell in the reference configuration, with curvillinear Gaussian coordinates Xα (α=1,2).
Associated with it is a complete description of the shell and the supplementary director
fields  DI = DI(Xα), I = 1,2,...n.

A motion of he shell is defined by specifying the possition vector, r, of the deformed
surface and the deformed directors, dI, as function of the curvillinear coordinates, Xα and
time t:

)(),(

)(),(
i

III

i

dtXdd

rtXrr

ξ==

ξ==
α

α

(5)

Let us assume that m constraints are imposed on the deformation in

mIddr IIi ,...1     0),;,( , ==ψ αα (6)

which must satisfy frame indifference.
The Lagrangian density H associated with the multilayered shell is given by

),;,(   , )( ,iIIii
i ddrYYYLH =ψλ−= (7)

ant λ i = λi (Xα,t) is the Lagrange multiplier associated with the i-th constraint, eqn (6).
The laws of motion, given by eqs (15a,b) in  [8], are equivalent to the Euler-Lagrange
equations

0
,

=−
φ∂

∂−
φ∂
∂α

ξ∂
∂

α
QHH (8)

Then the Noether's theorem can be applied to our case. To confirm this statement we
choose
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Before proceeding further, the integral form of the conservation laws is given,
applying the Gauss theorem to (3):

∫∫∫ =++α+++α++ α
ααα

s
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c
I

I

s
I

I
p dsqFFpdlnLqTpTdsLqPP
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d 0)()()( 0 (10)

where c is the smooth closed curve, bounding s and n is the unit normal (in s) to c.
Following Toupin  [10], one can postulate that the action density L is invariant under

the group of Euclidean displacements. Since the group of Euclidean displacements is a
connected Lie group, it is sufficient to require that the action density is invariant under
infinitesimal transformations of the group of Euclidean displacements in order to be
invariant under arbitrary, finite transformations of the group. An infinitesimal
transformation of the group has the form:
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η+==φη+φΩ+φ=φη+= 0
***    ; ),(   ; )(   ; CttdrDCXX I (11)

where Ω is  an antisymmetric tensor, Ω = ΩT, and Ω, C, C0 and D are arbitrary constants.
By taking all of the arbitrary constants in (11) to be equal to zero, except the one in turn,
we obtain the corresponding conservation laws:

(I) DpDD ==γ=β=α=α≠ α    , 0   ,    , 0   , 0   , 0 I0

The corresponding conservation law (10) now reads

∫ ∫ ∫ =−+ α
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dt
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(II) III dqrpdr Ω=Ω=Ω=γΩ=β=α=α≠Ω α    ,    ,    ,    , 0   , 0   , 0 I0 .

This transformation represents rigid body rotation, and the corresponding
conservation law reads
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This transformation represent a shift of time, and the corresponding law reads
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where  LdPrPE I
I −+= .

The conservation laws (12-14) represent the conservation of linear momentum,
moment of momentum and energy, respectively. Thus, we have established the basic
theorem of equivalence between conservation and invariance  [10].

As a special case we consider

(IV) α
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α
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This transformation represents the family of coordinate translations, and leads us to the
conservation laws which are of a special interest for us.
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The expressions (12-15) represent novel conservation laws for multilayered shells. Of
special interest in fracture mechanics is the expression (15) which represent the
conservation law of J integral type.
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4. APPLICATION

A. Special case

Bearing in mind the application to elastic multilayered shells, it is convenient to
assume a Lagrangian density decompossable as

KWL −= (16)
with

JI
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and
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where the inertia coefficients R00, R01, RIJ are time independent. Under these
circumstances K satisfies Euclidean invariance, what can be verified easily, and since L
has been assumed to be Euclidean invariant, it follws from (16) that the same is true for
W.

For the case n = 1, eqn (8) reduces to the theory of Cosserat surface with one variable
director  [7,8], which has been used for the theory of sandwich shell (9). Indeed, for n = 0
and no constraints, eqn (8) and (16-18) reduce to:
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where φ = (r,d), G = (f,g) and κ(a,b) = (R00a+R01b,R01a+R11b).

B. Elastic plates

We are interested in homogeneous flat plates, for which the reference configurations
is of the following form

constddXXrr RR ===    ; )0,,( 21 . (20)

X 1 and X 2 being rectangular Cartesian coordinates. Then, from (16) W and T will
represent energies/unit undeformed or reference area. To describe its homogeneity, we
restrict W by the condition that

)0;,,,,();,,,,( βα
γ

βα == ddrWXddrWW (21)

where the coordinates are chosen so that the original lines are within the plate.
Recalling that W  does not depend explicitely on r and has to be Euclidean invariant

[7], one obtains:
),,(),,( *
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The equation (19) then becomes
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and the corresponding conservation law (10) in becomes
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∫∫∫ =−−δ+κ αβα
ββ
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where the curly brackets denote the inner product.
Another simple case can be obtained if (23) reduces to a system of ordinary

differential equations. An obvious possibility is to put:

VtXnxGxUU −=== α
α   , 0   , )( *

where nα and V are constant. Then (24) transforms to a integral:

∫∫ =κ−−κ+ α
α
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which is path-independent for any path c(t) around the crack tip and t > t0 > 0.
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ZAKONI ODRŽANJA TIPA J-INTEGRALA
ZA VIŠESLOJNE LJUSKE

Mirko Vukobrat, Aleksandar Sedmak

Koristeći osobinu invarijantnosti varijacionog principa u odnosu na grupu infinitezimalnih
transformacija za vektorska polja, u ovom radu je uveden odgovarajući oblik teoreme Emi Neter.
Potom se na primeru višeslojne ljuske sa zadatim ograničenjima koristi Euklidova grupa
transformacija i njoj pridružuju odgovarajući zakoni konzeravcije. Na kraju se analiziraju dobijeni
rezultati.


