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Abstract. In this paper, the theorem of the lower limit carrying capacity for a special
class of the thin cylindrical shells is given, applied on the uniformly distributed radial
load. In this method, the lower stress limit is searched for by determining the statically
and plastically permissible stress field which fulfills the equilibrium conditions,
boundary conditions of each force and the given yield condition. The Mises yield
condition applied to a homogeneous isotropic material is used as an illustration. The
problem given in this form comes to a typical non-linear programming NLP problem
and for its solution the procedure as well as the computer program package SLLIM is
used. The obtained limiting stress values are compared with the experimental ones
given in the References available to the authors.

1. THE HYPOTHESES OF THE THIN SHELL THEORY

The elastic thin shell theory is based on the hypothesis of the linear theory of
elasticity; namely, that:

1.
2.
3.

4.

the material is homogenous and isotropic,

stress and strain relations are linear (Hooke’s law),

displacements are small so that squares and higher degree displacements and their
derivatives can be ignored,

displacements of points of application of internal and external forces in
equilibrium conditions can be neglected.

Additionally, some new hypotheses are introduced:

5.

6.

the elements which in the strainless state normal to the middle surface remain
normal to the deformed middle surface and their length is not changed

the stresses in the cross-section which are parallel to the middle surface could be
ignored.

The fifth hypothesis results from the thin plate theory as Kirchhoff-Lawe’s
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hypothesis. The essential consequence of this hypothesis is that the displacements of the
middle surface shell point are known, such that the shell strain is completely defined by
the strain in it's middle surface.

2. THE CIRCULAR CYLINDRICAL SHELLS

On the basis of the thin shell general theory [1,6], and due to the adequate
characteristics of the other basis surface form by which the circular cylindrical shell
geometry is defined, all general theory expressions are considerably simplified. The
position of the middle surface point is determined by x and s coordinates, that is , by the
distance along generatrix and the length of directress arch. The length square of the linear
element of middle surface is ds*= dx*+ ds’, while Lamé’s parameters and curve radii are:
A=1,B=R,R; =R,—», R, =R, =R = const. The distance from the middle surface is
measured by ordinate z, which is positive in the direction of the external normal n,

(fig. D).
2.1 The equilibrium conditions

By section x and x+dx, that is ¢ and ¢+d¢, vertical to the middle surface volume
element dxRd¢2h is formed. The normal stress 0, = 0, according to the hypothesis 6. The
relations by which section forces are defined, are in function of component stresses and
the element width ds¢# = (R + z)dsy /R to the distance z from the middle surface. The
volume element of the shell must be in equilibrium under the action of the cross section
forces and external tractions p = [py, Py, Pr ]. Ten forces in the cross section should satisfy
six equilibrium conditions, which have been transformed in the following three
conditions :
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2 2 2 2
M M M M
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+Rpy =0
(1

2.2 The strain

During the shell deformation the points of its middle surface are displaced by u, v,
and w, respectively, in the direction of a derivative, a tangent on a circle and a normal.
These displacements are positive in a sense of x and s increasing , that is, in the direction
of the normal to the middle surface. Based on hypothesis 4, displacements of all shell
points are determined when displacements of the middle surface shell points are known,
that is, the deformation is defined by the three tangential strain components :

e :a_u e :L v+w :a_v+iﬂ (2)
xR e "0 "5 TR 09

as well as by the three components of the middle surface bending strain, which also
include surface bending and a curve change :
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The strain components must satisfy the three strain compatibility conditions. For the
equidistant surface at distance z from the middle surface of the shell, the strain
components of the following form

o_ o_ o _
€y — &y + ZK S¢ - S¢ + ZK¢ 'YX¢ - 'YX¢ + 2ZKX¢ (4)

relate components of bending strain with the principal strain values of the general theory
of elasticity (dilation and shear).

2.3 The section forces and strain values connections

Taking into the consideration the expressions for the strains for an equidistant surface,
neglecting h/R members and their higher powers, we reach the following relations for the
cross section forces and the strain values of the circular cylindrical shell:

N, =D(gy +vey), Nyy =0,5(1-v)Dy,y, My =Ky +VKg), Myy = =(1-v)Kkyy, )
Ny =D(gg +vey), Nyy =0,5(1=v)Dyyy, My =K(icg +viy), Mg, ==(1-v)Kiyy

2.4 The limiting conditions

The most frequent shell boundary conditions are:
- a partly or completely free boundary: N, = ﬁxtb =T, =0, M,=0

- a strictly encastered boundary: u=v=w=0, vy=

- a boundary is connected by pin joint with the support: u=v=w=0, M,;=0

- a boundary is free supported with diaphragm: u =0, ﬁxtb =T, =0, M,=0

Under assumption that boundary is traction-free and supports are rigid, homogeneous
boundary conditions have been obtained. That is, some force components and
displacements on shell boundary are equal to zero. When boundary is not traction-free, or
when supports are subjected to certain displacements, the boundary conditions are not
homogenous.

2.5 The limiting state of the circular cylindrical shell

The limiting analysis of a rigid-plastic solid is based on the determination of yield
conditions, the allowable static stress field and kinematically admissible field of the strain
velocity. This analysis can be simplified by using the fact that the first condition is a
scalar mode while two conditions per field can be described without the stress tensor
analysis and the velocity tensor in each point. The simplification of this type has already
been adopted in elasticity, and will be carried out here. Namely, in the domain of
Hooke’s law, internal forces have been defined for the two orthogonal cross-sections.
Thus, in order to completely describe the shell stress state it is enough to know six
expressions (5), which must satisfy the equilibrium equations (1). To describe the strain
state, the stresses can always be transformed into strains via the generalized Hooke’s law.
Also, Bernoulli’s law is valid as well as its generalization, that is, the law of keeping of a
normal (hypothesis 5), both in elasticity and plasticity domain, which have been shown in
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theoretical [Massonnet] and experimental papers [Rianitsyn]. On the basis of these
hypotheses the adequate simplifications of the shell limiting analysis have been
introduced.

Replacing the volume element of dxdydz value by the shell element of dxRd¢H, that
is the stress tensor Oj by the generalized stress Q; and strain velocity tensor by q
generalized strain speed, the fundamental plasticity theorem does not change. For further
analysis it is important to mention the following theorems: maximal power dissipation
theorem: upper and lower carrying limit theorem as well as fundamental characteristics,
yield surface convexity and plastic potential law.

Thus, the stress tensor @j; is replaced by the generalized stress symmetrical tensor Q;,
with the following components Q; = (Ny , Ny , Nyxg , My, My , M), where Ny = Ny, and
M,y = Mgy . Transversal forces Ty and Ty are not generalized stresses. According to the
hypothesis 5, that is, thin shell theory, the normal on the middle surface of the shell is
principal axis of the velocity strain tensor at all levels within shell thickness. Ziegler has
shown, [2], that this direction is principal for the stress tensor in the shell element wholly
plasticified, both for Treska and Huber-Hencky-von Mises’s yield condition. This means
that the tangential stresses vertical to the middle surface should be equal to zero and,
consequently, Ty and Ty transversal forces are zero, when they are treated as generalized
stresses in the generalized stresses tensor. Also, the conclusion is that transversal forces
do not participate in dissipation power, and they do not work in elasticity domain so they
do not participate in yield condition. This is, certainly, opposite to equilibrium conditions,
in which they are different from zero, but they really exist.

Understanding this problem with shell and plates, theoretically and experimentally, is
still very limited. However, it is well known that the relative thickness of surface girders,
measured as the ratio "the span per thickness", is in general much greater than the ratio
"the span per height" of beam girders. With thin shells this ratio can reach the value of
500 while with beams rarely it exceeds 30. For this reason, it is logical to suppose that
transversal forces will not have significant influence on shell plastification so that they
can be ignored.

Generally the yield condition of shell element is the following function:

(p:(NX’N¢’NX¢’MX7M¢’Mx¢7cl""’c2):O’ (6)

where C,,...,C, are the characteristic constants of material. This condition is represented
by convex surface in space with 6 dimensions that refer to ONy ,...,OM,4 axes.

In general case the ratio between stress and plastic strains is given in differential
mode, that is, by yield law. In case of circular cylindrical shells, plastic strains are
determined through known equations, in which strain components have been connected
to displacements, in accordance with hypothesis 3 on small strains. During a time interval
dt from yield appearance, strain components vary. Plastic yield is characterized by the
strain velocity field with the following components:
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In order to completely define the strain process, the fact that plastic strain occurs at a
constant volume should be taken into consideration. As the consequence of plastic
potential law, application to the yield condition this condition is stated as linear tensor
invariant of strain velocity through equation: e, +¢, +e, =0.

Three equilibrium equations (1) and equation (6) form a system of four equations with
six unknown generalized stresses Q;. Since the equation system (1) is a system of
differential equations, the adequate boundary conditions per generalized stresses should
be stated. The problem of determining the internal forces defined in this way is, certainly,
statically undeterminate. By applying the yield law [12] to the yield condition, (6), six
relations will be obtained,

)
q; =7»6—Q (®)

where qi* = (EX*, 8¢* , qu,*, Ky s K¢*, Kx¢*) is a function of six generalized strain velocity
components, and A is a positive scalar. Strain velocity components q; are partial
derivatives of yield conditions (6), that is they are the functions of generalized stresses
Ny,...,Mxp The generalized stresses are via relations (5) connected to strain components,
and they are through equations (7) connected to components of displacements velocity
vectors u*, vandw.

At last , a recapitulation of available equations can be done and also the comparison
with the number of unknown values made.

There are ten equations in total:

- yield condition (6) .....c.cooereeieierienieniineneeeetetee e e one equation

- equilibrium conditions (1) .....cocevererinenereeieieicnenencseeeeceeeene three equations

- generalized strain velocity relations (8)......ccccvevcveervieeriieniieeniienieeeenn six equations

The unknown values are:

- six generalized stresses Qi = (Nx, Ny, Nyp , My, My, M)

- three components of displacement velocity VECtOT.........ccccvvevvveeciiencieenienn. u,v oW

= SCAlAL PATAMELET ... ..ecueieeieiieiiee et ettt et e st e teeee e e neeneeenes A

Since the number of the unknown values is equal to the number of equations, the
problem of determining the boundary carrying capacity can be considered statically and
kinematically determined with boundary conditions per forces and strain velocities
satisfied (theoretically the solution is possible in a closed form). However, relations for
connection of velocity vector component with strain velocity components, and also
differential connections(5), are such that it is possible to obtain analytical solution by use
of a very complicated mathematical apparatus, that is, practically, the problem is possible
to be solved in principle. For that reason many scientists used to resort to approximate
solutions in such a way that they introduced corresponding simplifications [3,5]. Very
often these solutions were directed to determination of boundary load approximate values
by applying the upper and lower limit theorem (kinematical and static method). In the
following paragraph for the defined simultaneous problem [12], that is the equations (1),
(6) and (8), the procedure for determination of the lower limit carrying capacity for the
circular cylindrical shell is proposed.
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3. THE PROCEDURE FOR DETERMINATION OF THE APPROXIMATE VALUE
OF THE BOUNDARY CARRYING CAPACITY FOR CYLINDRICAL SHELLS

3.1 The Generalized stresses

The state of stress is determined by the field of generalized stresses
Qi :(NX’N¢$NX¢9N¢X9MX’M¢9MX¢’M¢X)' (9)

Numerical approximation of physical values is realized through development of these
values into complete sixth degree polynomials per variables x and s. Due to numerical
treatment of a problem, instead of real variables, dimensionless values have been used.
The normed point coordinates have the following form: { = x/R, ¢ = s/R, and the
complete sixth degree polynomial per { and ¢ is of the following form:

P=(LE0.8%.60.07.8°.2%0.607.0°.E 20,8707, 0°. 0",
E.E.80%.807.60% 07.E0.E0.807.£°0°.£70".60°.4°)
The generalized stresses become dimensionless values when they are reduced by the
corresponding plasticity modulus N, = 2hUJ. and N, = 2h[], as follows: n, = N; /N, and

m, = M; /M, ; while the field of dimensionless generalized stresses is defined by the
expression

(10)

Qi :(nx9n¢anx¢an¢x’mx’m¢amx¢am¢x)' (11)

Adding to the above polynomial members (11) corresponding variables Ay , By , Cy ,
Ei, Fi, S¢ and Jy , respectively from n, to myg , expressions for stress generalization are
finally formed, having the following general form

N, << i) M, <&« ip) 1 0
X = AE TP, m =—*= C&'" ,%z—(i+1)i+j+1 (12)
N, 22N M, 22 ; e

=0

n, =

By introducing dimensionless values for coordinates and generalized stresses as well
as the assumption that load components are px = py = 0, while p, # 0, the equations (1) are
transformed:
an¢ + anx¢ _Kam¢ amx¢

on, | Ox _ 2)

D ) a0  0¢ 0 A 0¢

2 2 2 2 (13)
3)ny +KB) qu) 22 0 > » 2 Do E:‘Pr-
H oo 0800 og 0500
Equilibrium condition 2M,, = 0 should be added to equations (13) in the form
4) nxq) - nq)x + Km¢x =0 (14)

For the method applied in this paper, as well as according to the principal assumptions
of the lower limit carrying capacity theorem, the equation (14) is not an identity.
Different from stress field 0 when according to the elasticity theory assumption the
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stress tensor is symmetrical, that is T,y = Tyx, the generalized stress field Q;, by definition,
does not satisfy this assumption, since Nyy # Nyx and Myy # My , so that the use of
supplemental equilibrium equation (14) is completely justified.

According to the lower limit theorem there is no need to define the permissible strain
velocity field, therefore relations between generalized stresses and strain velocity are
unnecessary. Also, according to strain work and plastic potential formulation, forces that
make work (generalized stresses Q;, here) participate in the yield condition, and the yield
condition itself, defined by expression (19), must be satisfied.

In general case radially distributed external load p,(x,s) can be subjected in the form
of a full polynomial with a degree lower for two from the polynomial by which
generalized stresses approximation has been carried out (the third equilibrium equation,
(13), is the second degree differential equation). External load, thus, can, be subjected in
the form of the fourth degree full polynomial along { and ¢ coordinates, that is , p,(x,s) =
pr(1+p&+psd+...4p1sd*), where every p,, ps.....pis is divided by p;.

For the radial uniformly distributed load all polynomial members, except for the first
one, are equal to zero. The free member on the right side of equation (13) is
dimensionless value, that is p, = -Rp;/N, , which depends on K coefficient. The
corresponding equilibrium equation members are multiplied by K coefficient. In
equations (13) and (14) K coefficient is calculated by the expression K = M,/(RN,,) and
the function has physical and geometrical characteristics of a shell.

3.2 The expressions for the transverse forces

The transverse forces at the cross-sections with { and ¢ normals are the bending
moment and torsion moment functions. On shell contours the substituting transverse
forces, normed by N,,, become dimensionless values in the following form:

f = KFme(b + amx + am¢x Ef = Kl:pm(bx + am¢ + amx"’ E (15)
““Hop e ap §* Hoee a0 &

3.3 The boundary conditions

In order to determine uniformly the generalized stresses from differential equations
(13) and (14) it is necessary to satisfy boundary conditions. Since the middle shell surface
is limited by lines which coincide with principal coordinate directions, for each contour it
is possible to set maximum four nonhomogenous boundary conditions per form forces:

for contour {=+1/R  n, =n}; m, =m}; N =0y, t =t (16)

X X2 X X

for contour g =+ ¢, Ny =ny; My Tmy; Ny Mgy, ty =ty (17)

The normed substituting shear force is given by the expression:

= (18)
=N,y — KM
N X0 X

p

Ny =

Forces with ° indication in index represent subjected forces that load the boundary.
Along the boundary they can be concentrated forces of a constant intensity per boundary
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length, or the sixth degree at the most per corresponding variable { or ¢, which is caused
by the accepted polynomial degree for the generalized stresses. For example normal force

S — 2+ 3 4 5 6
Ny =1y +xn2¢+xn3¢ +xn4¢ +xn5¢ +xn6¢ +xn7¢ ete.
3.4 The yield condition

For the defined field of generalized stresses, (9), the yield condition is eight
component function,
O(ny, 0y, Ny, N 4y, My, My, My, My, ) =0. (19)

When choosing yield conditions for a given construction physical characteristics of
material are dominant. On the basis of hypothesis 6 and stress tensor for circular
cylindrical shell subjected to cylindrical coordinate system x, ¢ and R, the yield condition
is simplified and has the following form o, - 0,0y + 0¢2 + 3T2x¢ =2 where O, is a
referent value which depends on physical characteristics of material. Similar to
generalized stresses the yield condition should be reduced to dimensionless values
normed by [.” . Besides the yield condition should be the function of the same variables
like equilibrium and boundary conditions and they are generalized stresses. At last, after
a series of transformation the yield condition obtains the following form:

tP 0z g

d 8

O 100 s

(O, , fm E [ny  Fimg | SO 20
-t +n +—+n¢ [l

oz o4 no? H HO

0 0g =i

0 . sl . i

43, e +ni¢BZDmﬂn¢x o e +H$XBZS:1

R

3.5 The possible stress state

The stress field, defined by Q; generalized stress, is statically permissible if stresses
satisfy equilibrium equations with in the whole shell area and if boundary conditions per
forces are fulfilled. Beside the stated for plastically possible field it is necessary
conditions, that the yield condition in that area and at the boundary be satisfied.
Depending on the boundary relation with the support the following boundary conditions
can be set:

the partly or fully free contour

for {=2/R 1)n, =n;

X 2) my =mS 3) ﬁxq) :ﬁitj)’ 4) Ex :Ei (21)

X

the contour is connected by joint with the supports
for { = £I/R, it is always n, = n,’, and from the remaining three conditions: m, = m,* ,
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=t none of them is needed to be set, or plus two at most, which depends

Ny =Ny, ty
on which force direction coincides the support direction:

the fixed contour

on this contour, conditions per forces can not be set. However, kinematical solution for

failure line distribution based on upper limit carrying capacity theorem offers a
possibility to set a condition, for example, for the contour whose normal is k, m; =m;,
that is m, =1 where M\ /M, =1, since M is moment value of full cross-section
plastification on the contour.

3.6 The unknown values and conditions

The unknown values are generalized stresses Q; and load parameter p,. Each
generalized stress comprises 28 unknown values, and they are the sixth degree
polynomial coefficient, (12), marked as Ay, By, Cy, Dy, Ey, Fy, Sk and Ji and there are
8x%28 = 224 total. The unknown load parameter p, should be joined to their total number,
that is, the total number of the unknown values is 225. The following conditions should
be met:

the equation of I-form:  equilibrium conditions (13) and (14) and boundary

conditions (21) as well

the inequality of II-form: yield condition (20).

In equation form conditions point coordinates { and ¢ do not figure. Their overall
number in scalar form is 98 equations from equilibrium condition (13) and (14), (the first
and second per 21, the third and fourth per 28); 7 equations for each of the first three
boundary conditions (21); and 6 equations for each of the fourth boundary conditions
(21).

U;=98+ 7(L, + L+ L) + 6L,

where U; denotes the overall number of equations, and L,, L,, and L, the first three
form conditions (21), and L; denotes the number of equations of the last form condition
(21) that can be set for a concrete shell case. For the shell from figure 1 it is obvious that
the number of independent equations cannot exceed the number of the unknown values
from Ay, By, Ci, Dy, Ey, Fi, S¢ and Jy, that is, U; < 224 . For complicated shell forms the
case Uj = 224 is possible, especially if polynomial degree is considerably reduced.

3.7 The mathematical problem formulation

Load parameter p;, is via equilibrium condition in correlation with the unknown values
Ay, By, Cy, Dy, Ey, Fy, S and Jy, and indirectly via yield conditions with point
coordinates of shell area { and ¢,

pr = f(Alo Bk9 Cka Dk9 Ek9 Fk9 Ska Jka Z ) (I))’ (k:1a2a928) (22)

If all the unknown values Ay, By, Cy, Dy, Ey, Fy, Sy and Jy are denoted with uniform
marks X; , where i = 1,2,....n, n = 224, the expression (22) becomes,

pr = f(Xi’ Z ) ¢) (23)

The equation form conditions (13), (14) and (21) are scalar conditions and are
denoted with
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h(X)=0, (=1.2,...U) 24)

The yield condition which is the function of the unknown values and coordinates,
according to the marks introduced, can be written in the form of

and applies for each { and ¢. A mark has-been introduced for the yield condition G as
well as in computer program SLLIM, that is G = &.

However, thus defined problem can be solved by applying some of the optimization
methods by which the peak value and also minimum or maximum of a function is
determined, that is, the target function, at a set of allowable solutions, which have been
subjected by in advance known functions, which represents a typical problem of a non-
linear programming (NLP problem). Therefore, the function (23) shall be maximized, and
conditions (24) and (25) satisfied in the whole shell area.

The usual optimization method, based on the variation calculation, cannot be used in
this case since the yield condition is given in the form of an inequality due to its
character. For this reason as well as for the non-linear relation in the same yield
condition, the method of the non-linear programming is very indicative. However, the
main difficulty is not about a high degree of inequalities nonlinearity (fourteen: X;* , {'?
and ¢'?) (25), but in the fact that the condition (25) should be fulfilled in all the area
points of the shell which means that there is an infinite number of these conditions. Thus,
some simplifications should be introduced so that the problem set in this way could be
practically solved.

3.8 The method for the lower limit carrying capacity solution

If the problem from (22) to (25) is differently formulated so that the yield condition
(25) is satisfied only in a chosen point series instead of the whole shell area, then the
point coordinates do not appear as variables. The yield point becomes much more
simplified (second degree only), while the inequality number reduces to the number of
points chosen n. The problem can be formulated in the following way:

p: = f(Xi) (Xi = Xi,..0,X004)
h; (Xi) =0, G=12,..,U) (26)
G,=G(X)20 (n=12,.)

By solving the problem (26) the values for all variables X; , as well as the maximal
possible load parameter value p;, is obtained. It means that statically possible load field is
obtained. However, the condition is that the field is plastically feasible, which is also
fulfilled, but only in the chosen shell points series. In a strictly mathematical view this
condition is not fulfilled in the whole shell area, since it may be disturbed in one of the
"middle points" area.

The obtained load parameter value p; is the highest statically and plastically possible
load parameter value, based on the lower limit carrying capacity theorem, that is, it is for
sure the best static solution within the limitations of the selected procedure. Certainly, it
refers to the approximate solution, which usually results from the boundary carrying
capacity theorems. Thus, the solution accuracy can, in general case, be evaluated by the
difference between the solutions obtained by the lower and upper carrying capacity limit.
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When there are exact solutions, a possibility remains to compare thus obtained values
with the exact solutions.

4. AN EXAMPLE OF THE CIRCULAR CYLINDRICAL SHELL ANALYSIS

In figure 1 a shell form and geometry are defined. The load is uniformly rotationally
symmetrical, that is, p, = p{&,9) = p1 = const along the whole shell surface. For a
boundary ¢ = ¢, , which is free, the boundary conditions per forces are: 1) ng= 0, my= 0,
ng= 0 and 2) ng,= 0. On boundaries & = *I/R the shell is freely supported, with the
conditions per forces, n,= 0, m= 0.

For the purpose of reducing the unknown
values number it is helpful in this example to
use the possibility offered by symmetry either
by the shell geometry or by the load form. The
number of the unknown values, uniformly
denoted by X;, is reduced and it is n = 64.
However, the load parameter p, is also one of
the n unknowns.

The overall number of scalar equations is:
28 equations from equilibrium conditions (13)
and (14), (the first, second and fourth per 6, the
third 10); 4 equations for each form boundary
condition (21/1,2,3) and 3 equations for each
form boundary condition (21/4).

Fig. 1. U;j =28 +4x5 + 3x1 =51
However, since U; < 64, the problem is
statically undetermined.

Based on the problem stated by (26), and according to NLP method, an optimization
equation should be chosen. Since the ultimate aim is to determine the shell carrying
capacity, the target function will be equilibrium equation comprising the unknown load
parameter p,, that is, the first scalar equation from the third equilibrium condition (13),
where p, = -Rpi/N,.. This equation should be maximized, or, since its value is negative, it
should be minimized, which is essentially the same, that is,

min p, = min f(X;) = minB- Rp, H: p* 27

HNH ™

From the remaining 50 scalar equations, which do not depend on & and ¢ coordinates,
it is necessary to extract those unknown values X; which are linearly dependent. After
linearly dependent value elimination #» = 17 independently variables remain, which points
out that there were 33 linearly dependent equations among the scalar equations U;. The
generalized stresses then have the following form:

n, =0,5k,5¢€” =17){(92 =397)[8X, +4X; + X5 + X4 +0,5(1,3X, + X + X)) +
+[20(07 =302) + (9" — 506X + Xy, +X;7)}
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ny = k(9 = 95)°[2X, +30X; +5(X); +X;7)]

m, = (&> =12 {X, +[(0° —2¢2)X, —1,5(4X5 + Xg + X,4) 3002 X5 = 502 (X, +X7)] +
+(E2 +17) (95 —307)[0,3X, +0,25(X,0 + X;)]}

mg = 0,507 = 92){2(97 = 92)(X5 +E°X,) =X = X 15 —[3(X; +X13) +5E3 (X + X5)] -
= 0o[Xs + X4 +387(Xp0 + X16) + 00Xy + X1 +(0° =20 —30°04)Xs

nyp = KEQ{[2007 = 97) + (97 —9)IO6Xs +X11) +[200° = 63) = 9g1X17 ~(9” ~¢7)
[&2(1,3)(4 +Xi) +8X, +4X; + X5 ] - X _ézxn _§4X15 _§2¢<2>X16 _¢§X14}

Ngy = KED{(D® — OIE> (1,3X, +X g + X 6) +8X, +4X; + Xy +X ] +
+[20(97 —93) + (0" — 916X + Xy, +X,7)}
m,, = EP(Xs + E2X; + 97X, + Xy +87¢7X 0 + 07X )

my, =EO(X, + EX 5 + 07X, + 81X s + 877X 6 +07X). (28)
The target function (27) has the following form:
K{2X) — 4o (4X; + Xg + X1g) =200 [X +3(6Xs + X, +X,7)B]=p, (29)

min Pr = min [
The yield condition of the form (20), G(X;) = 0, has to be fulfilled in a chosen shell
"points" series, (i =81). NLP problem form (26) is now formulated:

max p, = max f(Xl) (Xl = X],...,X17)
G, (X) 20 m=12,..81) (30)

5. THE INTERPRETATION AND ANALYSIS OF THE RESULTS OBTAINED

In paragraphs 3 an 4 the problem is mathematically stated and illustrated by the
example, and by SLLIM computer program a numerical analysis is carried out by use of
NLP method. However, the qualitative and quantitative estimate of the acceptability of
solutions obtained by the suggested procedure is possible only by comparing them with
the upper limit or with the known experimental values for the same problem. Since the
determination of the upper limit and the experiment conduct were not the subject of this
paper, it was necessary to find a qualitative solution by which comparison should be
made. Unfortunately there was no exact solution for the problem, as well as the solution
for the upper carrying capacity limit in the references used. For this reason, the results
from experiment [3] have been used as verified values for comparing solutions obtained
by the suggested procedure. According to the description of the author himself, shell
models have forms as shown in fig. 1, and are made of cement mortar. In order to avoid
the possibility that shell stability becomes a dominant influence upon their carrying
capacity, adequate model forms and dimensions are chosen to be analyzed.
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Models are without edge beams, which has enabled the study of a failure of the shell
itself. All shell types are circular cylindrical shells, free supported on boundaries x = *I
and free on boundaries ¢ = +¢, . Supporting has been performed through diaphragms,
which for the purpose of experiment can be considered absolutely rigid. Different types
of shells are realized through shell length variations, L, and their opening, which is
practically done with the change of the boundary angle ¢, In this way shells of long and
short type have been formed, which define L:a ratio, that is, the proportion of arch of
shell and shell width (f:a). All models belong to a shallow shell class. It should be
emphasized that experiments have shown that failure mechanisms consist of rigid parts
connected by pin joints along "lines of pin joints", that is, lines which underwent a
failure. According to this fact it could be said that failure mechanisms are similar to
mechanisms met with flat plates.

Table 1. Shell model geometric characteristics

shell ¢ R f a L=21 H=2h f:a L:a

type [°] [cm] [cm] [cm] [cm] [cm] : :
A 30 93 12,5 93 188 2,2 0,134 2,00
B 30 93 12,5 93 90 2,2 0,134 1,00
C 17 93 4,1 54 188 2,2 0,076 3,48
D 17 93 4,1 54 90 2,2 0,076 1,67

f-arch of shell a-shell hole width L-shell length

Beside experiment results, the author in the same paper [3], suggests an analytic
solution for the lower limit carrying capacity. This analytic solution is based on the usage
of discontinuity in the generalized stress field for the cross section forces n, and my
which belong to the cross section along "lines of pin joints" of failure mechanism. When
these analytic solutions are concerned, without analyzing their theoretical assumptions, it
is necessary to mention that principal assumptions of the thin shell theory and also the
lower limit theorem do not allow the discontinuity of stress and strain fields, since then
the compatibility conditions are not satisfied. However, there are also such approaches to
the boundary carrying capacity problem solution [5]. This problem was especially studied
by Prager and Hill. These authors consider the mentioned A. Sawczuk’s analytic solution
acceptable, so that it has been adopted as a comparative parameter for the estimate of
solution quality obtained according to NLP procedure, suggested in this paper. By
choosing the comparative solutions, the choice of the same shell types for the analysis by
suggested procedure, that is, by SLLIM program, is caused. The Huber-Hencky-von-
Mises yield condition is used in the examples, which from theoretical aspect is
considered the most strict, regarding the fact that in this paper the yield condition which
certainly suits the reinforced cement mortar, was unknown. Numerical values of the
obtained and comparative results are given in table 2 . By p° and p° signs the boundary
load intensities are denoted, obtained by experimental, that is, analytical procedure
respectively, expressed in the real measures. Since according to the experiment
description, the support along boundary couldn’t be clearly defined x = #1, that is, it is not
clear whether the displacement is u # 0 or u = 0, the solution for both cases has been
found by SLLIM computer program. These values have f* and f signs respectively in
table 2. The real values for boundary load parameters f an f  are obtained according to



688 M. GRUBIC, P. DANCEVIC, M. MILICEVIC

the expression (27). However, the determination of [, value, that is, boundary values of
N, and M, forces per length unit of shell cross section for real material, such as the
reinforced cement mortar, somehow represents a difficulty. The reason for this is lack of
information on plastic behavior of the reinforced cement mortar, the material of which
the analyzed shell models are made.

Missing the adequate yield condition for this material, an attempt has been made to
determine, at least approximately, boundary values for N,, and M,, forces for the observed
shell models, by applying a method from BAB’87 regulations, which otherwise apply for
the reinforced concrete. Thus, it is possible to express dimensionless values of boundary
load, p,, as real values of boundary load f anf and represent them in table 2.

Mechanical characteristics of the model material are:

- R’ = 1,40 kN/cm? calculating strength of cement mortar at pressure

- 0. =100,00 kN/cm? yield limit reinforcement

- The reinforcement is divided into two orthogonal networks parallel to principal

coordinates directions x and ¢ with holes of square form, 13 X 13mm (n =2 x 78
number of wires/m).

N, normal force and M, moment have been calculated, N, = 460,86 kN/m, M,,= 1,596
kNm/m, and coefficient K= M, /(RN,) = 0,0037237.

The boundary load intensity f , determined by a static method with application of
non-linear programming (NLP method), for all shell types A, B, C and D is lower than
the boundary load intensity p° from the experiment (by 60, 43, 49 and 23%). Thus the
theorem of the lower limit of the intensity of the boundary load is confirmed. For all shell
types f > f , which is a consequence of some relations of shells with diaphragms, that
is, displacements u at supports in the direction of x have been prevented. This is
especially prominent for shell type B, where ratio is L:a = 1 and f = 2f ; and the
smallest difference is for C type (2,6%) where ratio is L:a = 3,48 which could be
expected. With respect to the experiment, the boundary load intensity is lower, that is, it
is always f < p° , which according to the table sequence is 39, 16, 48 and 14,5%.

Table 2.

Shell pe pS pS fD fD fﬂE fﬂE
type  [kN/m?] [kN/m?]  [%]  [kN/m?] [%]  [kN/m?]  [%]

A 10,5 157  +49,0 4213  -60.0 6,428 -390
B 35,0 68,7 +96,0 19,878  -43,0 40,754  +16,0
C 7,0 50 28,0 3,526  -490 3,620  -48,0
D 19,5 21,5 +10,0 14,854  -23.0 16,664  -145

p° - EXPERIMENT [3]

p° - ANALYTIC SOLUTION ACCORDING TO SAWCZUK’S SUGGESTION [3]

f° - VALUES OBTAINED BY NLP METHOD (ON BOUNDARYS x = #I:

BOUNDARY CONDITIONS n,= my= 0)
f* - VALUES OBTAINED BY NLP METHOD (ON BOUNDARYS x = #l:
BOUNDARY CONDITION IS my = 0)

As already said, the boundary load p° represents the lower limit carrying capacity. For
A, B and D shell types, boundary load p* values are higher than the experimental ones p°
and expressed in the same sequence in percentages are 49, 96 and 10%. This deviation is
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lower than the experimental value for C type shell for 28% and this solution can be
considered the only acceptable value, since this refers to the procedure based on the
lower limit carrying capacity theorem.

Beside boundary load parameters, the output values of SLLIM computer program are
the values of yield conditions and the generalized stress Q; in the discrete shell point
system. Their change is graphically represented in Fig. 2 and 3. In all figures the middle
shell surface is represented, without thickness, which is considered to be zero surface,
and vertically to it in a selected discrete point sequence, (fi = 81), ordinates are directed
which correspond to physical values.

Fig. 2. Tip A (displacements u at supports Fig. 3. Tip B (displacements u at
in the direction of x have been supports in the direction of x
not prevented) have been prevented)

In figures 2 and 3 the yield conditions for A and B type shells are represented. Since
the yield condition function in the whole shell area fulfills the condition G(X;, &, ¢) = 0,
the ordinates are always positive, which is clearly seen in the figures. It should also be
mentioned that each middle surface point, whose ordinate is equal to zero, corresponds to
a cross-section of the exhausted carrying capacity.

Also, the distribution of the generalized stresses Q; is represented in the figures. The
ordinates numerical values are calculated in a selected points sequence (fi = 81). From the
generalized stress fields Q; which have been normed by N, and M, modules, the real
cross section forces values can be easily calculated, that is Ny,..., Mgy , by which the shell
stress is defined, via ordinates multiplication with N, and M,, .

The changes of the yield condition function on shell surface, represented in Fig. 2 and
3, could be used for the estimate of a possible failure mechanism form, since the failure
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will occur in the points where this condition reached its maximum, that is, where it is
equal to zero. On the basis of the figures, photos and descriptions [5] of real failure
mechanisms on shell models from comparative experiments [3] , a great similarity has
been found between the real construction behavior and the results obtained by the
suggested procedure. This fact, certainly, confirms the acceptability of the results
obtained.

The suggested analysis procedure has been separately carried out by the generalized
stress development into the fourth degree polynomial [13] . Then some differences have
been observed in regard to the procedure derived by static values approximations by the
sixth degree polynomial.

All figures enclosed are made by grafl and acad computer programmes.

6. CONCLUSION

Based on these observations a conclusion is that the increase of degree of the
developing polynomial will probably contribute to obtaining a more qualitative solution.
Perhaps, some other development functions forms should be considered instead of
polynomials, which will describe the stress field in more details, and certainly, the yield
condition.

A completely correct check of a suggested procedure value for determination of the
lower limit carrying capacity for the circular cylindrical shell, however, can be realized
only upon carrying out a series of experiments on prototype construction or models of
material which largely satisfies hypotheses and the yield condition used in the analysis. In
a concrete case, this should be the reinforced cement mortar or, if model check is done,
the reinforced gypsum as was done by the experiment in the paper [10].

The analysis of the results obtained has shown that the non-linear programming
method suggested in this paper gives, as a rule, lower values of boundary carrying
capacity than the experimental ones. This should have been expected since the method is
based on the theorem of the lower limit carrying capacity. Different from the comparative
analytical solution p°, also for the lower limit carrying capacity, by NLP method only in
one case f for the C type shell, a result is obtained which is higher than the experimental
value. This value is otherwise determined for C type shell, but with a hypothesis that the
shell displacement in x direction is prevented, which probably do not correspond to the
real support conditions. Certainly, the procedure for solving the problem by means of
static method determines the obtained solution as an approximate solution of boundary
carrying capacity of circular cylindrical shells, but these solutions are within acceptability
limits.
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GRANICNA NOSIVOST KRUZNO CILINDRICNIH LJUSKI
Mileva Grubié, Petar Dancevic, Mili¢ Milicevié¢

U radu se primenjuje teorema o donjoj gramici nosivosti za posebnu klasu tankih ljuski
cilindricnog oblika, pod dejstvom uniformnog radijalnog opterecenja. Ovom metodom donja
granica opterecenja trazi se odredivanjem staticki i plasticki dopustenog polja naprezanja, koje
zadovoljava uslove ravnoteze, konturne uslove po silama i usvojeni uslov tecenja. Za ilustraciju je
odabran Mises-ov uslov tecenja, primenjen na homogen izotropan materijal. Ovako postavijen
problem svodi se na tipican problem nelinearnog programiranja, NLP, za Cije reSenje je koriséen
postupak i kompjuterski programski paket SLLIM. Dobijene vrednosti parmetra granicnog
opterecenja uporedene su sa vrednostima iz eksperimenata, koji su objavijeni u literaturif3]
dostupnoj autorima.



