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Abstract. In the present paper the theory of the micopolar fluid has been applied for
analysis of stationary flow between two parallel plates. Possibility for application of
new dynamic boundary condition which is presumed that the couple stress on the
boundary surfaces has a certain value is being considered. The obtained results for the
velocity and the microrotation velocity has been compared with known results and
conclusion is that they are special case of results from this paper.

1. INTRODUCTION

The theory of micro-fluids, introduced by A. C. Eringen [1], deals with a class of
fluids which exhibit certain microscopic effects arising from the local structure and the
micromotions of the fluid elements. A subclass of these is the micropolar fluids which
have the microrotational effects and microrotational inertia [2]. This class of fluids
possesses a certain simplicity and elegance in their mathematical formulation. The
micropolar fluids can support the couple stress, the body couples, and the nonsymmetric
stress tensor, and posses a rotation field, which is independent of the velocity fluid. The
theory, thus, has two independent kinematic variables: the velocity vector υ

!
, and the spin

or microrotation velocity vector ν
!

.
The linear constitutive equations for a nonsymmetric stress tensor contain an

additional viscosity coefficient  k, which describes the coupling between the velocity and
the field. The linear constitutive equation for the couple stress also contains three
additional viscosity coefficients α, β and γ.

In the present paper we are considering the possibility of applying a new boundary
condition for the velocity of microrotation. Namely, we attempt to answer the question
whether it is physically justifiable to take the couple stress on the boundary to be zero [3].
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The expression obtained for the velocity is graphically represented and compared with
the corresponding expression for the case of the classical theory.

2. EQUATIONS OF MOTION OF A MICROPOLAR FLUID

2.1 Constitutive Equations

The constitutive equations for the stress tensor tkl  and the couple stress tensor mkl are
given as [1]

)()()( ,,,, rklrklkllkklrrkl kt νε−υ+υ+υµ+δλυ+π−= (2.1)

kllkklrrklm ,,, γν+βν+δαν= , (2.2)

where the comma denotes the partial differentiation, and klδ  and klrε  are the Kronecker
delta and the alternating tensor respectively.

2.2 Field Equations

The field equations for micropolar fluids in the vectorial form are given by:

0)( =υρ∇+
∂
ρ∂ !

t
, (2.3)

υρ=ρ+π∇−ν×∇−υ×∇×∇)+(µ−υ∇∇)+2µ+(λ "!
!!!! fkkk ,  (2.4)

ν=+ν−υ×∇+ν×∇×∇γ−ν∇∇γ+β+α "!
!!!!!

gjlgkk 2)( , (2.5)

where ρ, j, f
!

, l
!

 and π are the mass density, microinertia, body force per unit mass,
body couple per unit mass and the thermodynamic pressure respectively, λ and µ are the
viscosity coefficients of the classical fluid mechanics, and k, α, β and γ are the new
viscosity coefficients for micropolar fluids. The dot denotes the material time derivative.
From the local Clausius-Duhem inequality, the material coefficients must be subjected to
the restrictions:

. γβγ-   , 03   , 023
, 0   , 0   , 0

≤≤≥γ+β+α≥µ+λ
≥γ≥µ≥k

 (2.6)

By the incompressibility assumption, the thermodynamic pressure π is an
undetermined pressure p, which must be determined by the given boundary conditions,
and the equation (2.3) is replaced by

0=υ∇
!

, (2.7)

which is automatically satisfied.

2.3. Boundary conditions

By their own character, the boundary conditions can be twofold: kinematic and
dynamic. The kinematic boundary conditions lie in the fact that the kinematic values,
velocity and the angular velocity have definite quantities at the boundary. In the dynamic
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boundary conditions, however, on the boundary surfaces the values of the stress and the
couple stress are fixed.

Let us suppose, as we do in the classical fluid mechanics, that the stress velocities of
the fluid particles on the boundary surface are equal to that of the boundary surface itself,
i.e.,

 ii V=υ , (2.8)

where υi represents the velocity of the fluid particles, and Vi the boundary surface
velocity.

In order to realize the existence of the couple stresses on the boundary surface, it must
be assumed that there exists a rotational friction between the fluid particles and the
boundary surface. If we assume that the rotational friction in the whole area is the
greatest just on the boundary surface, then, for the dynamic boundary condition referring
to the microrotation velocity, it will be assumed to have a certain fixed values, i.e.

.constnmM lklk == , (2.9)

where Mk is the couple stress, mkl is the couple stress tensor, and nk is the unit normal
vector to the boundary.

3. THE FLOW BETWEEN TWO PARALLEL PLATES

The flow between two stationary parallel plates at the distance of 2h is defined by the
pressure gradient (Fig. 1). The Ox axis overlaps the main line, the Oy axis is
perpendicular to the flow, whereas the Oz axis is perpendicular to the plane of the flow.
In this case the velocity components and the microrotation velocities are

O

y

h

h

x

Fig. 1.

)(   , 0 yxzy υ=υ=υ=υ , (3.1)

)(   , 0 z yyx ν=ν=ν=ν . (3.2)

The conservation law is identically satisfied with ρ = const. By neglecting the body
forces and body couples the equations of motion (2.4) and (2.5) are reduced to the form

0)( 2

2
=−ν+υ+µ

dx
dp

dy
dk

dy
dk , (3.3)
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022

2
=ν−υ+νγ k

dy
dk

dy
d . (3.4)

The general solutions of the equation (3.3) and (3.4), for the velocity and
microrotation velocity are

, 
2
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2

2
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k
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k
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+µ
+
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y
kdx

dpy
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2

1
2

k sink cos , (3.6)

where 
2
1

2






γ+µ

+µ≡ k
k
kk , and A, B, C and D are the arbitrary integral constants. For the

given case of the flow, the boundary conditions, according to (2.1), (2.2) and (2.7), are

 M
dy
dhhy

hy
=νγ=υ=

=
     , 0)(     : , (3.7)

M
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dhhy
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=νγ=υ−=

−=
     , 0)(-     : . (3.8)

By using the boundary conditions (3.7) and (3.8), we can obtain the values for the
integration constants

,
2

12
2

1D     ,0

,h cos
2

1     ,0

2
2

1

dx
dph

k
h

kdx
dp

k
MC

hdx
dp

k
MBA

+µ
−





λ

+γ−





+µ
+

γ
==






 λλ







+µ

+
γ

==

2

−

 (3.9)

where λ ≡ kh.
By substituting the integration constant values in (3.7) and (3.8), we obtain the

solutions for the velocity and microrotation velocity for the case of the micropolar fluid
between two parallel plates
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Unlike the results known in the literature, in the solutions for velocity and the
microrotation velocity, there appears a term, as a consequence of the assumption of the
existence of the couple stresses both in the fluid and on the boundary surfaces.

If in the solutions quoted above we take that M = 0, we obtain for the microrotation
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velocity the expressions identical to those given in the paper [4], i.e.,
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If in the solutions (3.12) and (3.13) we take k = 0, they are then reduced to the case of
the classical fluid flow,

0   , )(
2
1 22 =ν−
µ

=υ=υ hy
dx
dp

kl . (3.14)

In the addition to that, if in the expression for velocity (3.10), we take

dx
dp

k
M

+µ
γ−=

2
, (3.15)

we obtain the solution for the velocity of the classical fluid flow.
The expression (3.15) calls for a discussion. Namely, let us suppose that the couple

stress varies within the limits

0
2

≤≤
+µ
γ− M

dx
dp

k
. (3.16)

For each M higher than 
dx
dp

k+µ
γ−

2
, the velocity values are lower than classical

velocity vkl, whereby the lowest velocities are obtained for M = 0, as illustrated in (Fig.
2). The classical velocity is obtained for 0/ =µk , whereas in the case when M = 0, the
lowest velocity is obtained for ∞=µ/k .
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,

Fig. 2.

From (3.10) we obtain volumetric flow rate
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where 
dx
dp

k
hQ
+µ

−=
23

4 3

0 . Note that with M = 0 we obtain for volumetric flow

expression identical to those given in the paper [4], and for k = 0 flow is described by
classic Poiseuille formula.

4. CONCLUSION

In the present paper the theory of the micropolar fluid has been applied to an actual
flow. The assumption that the couple stress on the boundary surfaces has a certain value,
which has been taken as a dynamic boundary condition, has caused some differences
from the results for velocity and the microrotation velocity of the flow under
consideration known up to the present. In the boundary conditions formulated in this
way, there has been raised the question of how high the couple stresses on the boundary
surfaces are, but such assumption has, nevertheless, made it possible to incite a
discussion on the character of the effects of the surface couple stresses on the given flow
of a micropolar fluid.
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O PROBLEMU STRUJANJA MIKROPOLARNOG FLUIDA
Predrag Cvetković

U radu je primenjena teorija mikropolarnih fluida za analizu stacionarnog strujanja između
dve paralelne ploče. Razmatra se mogućnost primene novog dinamičkog graničnog uslova kojim se
pretpostavlja da na graničnim površinama naponski spreg ima neku vrednost. Dobivena rešenja za
brzinu i brzinu mikrorotacije upoređuju se sa do sada poznatim rešenjima i zaključuje se da su ona
specijalni slučaj rešenja iz rada.


