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Abstract. This paper deals with perfect bifurcational discrete dissipative systems with
trivial precritical states under mainly conservative compressive loading. Attention is
focused on the conditions under which these symmetric autonomous, weakly damped
systems can exhibit a limit cycle response due to a Hopf bifurcation or to a double zero
eigenvalue or to flutter instability.

1. INTRODUCTION

In various recent studies of the author and his associates [1,2,3,4] criteria for the
occurrence of /imit cycles in non-potential (nonconservative), weakly damped, systems in
regions of divergence were presented.

In this work a thorough local analysis for seeking the conditions of existence of Hopf
bifurcations, in symmetric, weakly damped, systems as well as flutter (existence of a pair
of complex conjugate eigenvalues with positive real part) or coupled flutter-divergence
instability (associated with a double zero eigenvalue) are comprehensively discussed. To
this end attention is focused on the nature of the damping matrix, whose effect is of
paramount importance for the occurrence of the above instability phenomena.

2. MATHEMATICAL ANALYSIS

Consider a general N-DOF, N-Mass, nonlinear discrete dissipative system with trivial
precritical state under partial follower compressive load A with nonconservativeness
loading parameter N Lagrange equations of motion of this autonomous nonpotential
dissipative system in terms of generalized displacements q; and generalized velocities q;,

(i=1,...,n) are given by
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Aok oK _OF LU _ =0, i=l..n )
dt[0q; [J Oq; 0q; Oq;

where the dots denote differentiation with respect to time t; K = (1/2)aijqiq j is the positive
definite function of the total kinetic energy (in tensor Einstein's notation) with diagonal

elements, being functions of masses m; (i.e. = Qj(m;)) and non-diagonal elements qj;,
being functions of m; and q; (i.e. O;;= O;(my,q;) for i Zj); F= (1/2)cijqiqj , 1s a positive
definite, or positive semi-definite or indefinite dissipation function with elements c;;,
being functions only of damping coefficients ¢; (i.e. ¢jj= ci(ci)); U =U(qik;) is the
positive definite function of the strain energy, being a nonlinear function with respect to
g; and linear with respect to stillness coefficients kj; Q; = 7‘6i (q;;m) are generalized non-

potential external forces, being nonlinear functions of g; and n. For a certain value
N = N., the external forces become potential (conservative), while for n # n. the system is
non-potential (asymmetric). Clearly, the damping matrix [c;] may be positive definite,
positive semi-definite or indefinite.

The static equilibrium equations and buckling equations are given by

V,=U; -AQ; =0, i=1,.,n H

_ 2
det[Vy] = det([Uy] —A[Q;]) = 0% @

where U; = 0U/dq;, and [Uy] is symmetric matrix, while [6,»]»] =[0Q,/dq; ]is a square non-
singular asymmetric matrix for n # . (non-self-adjoint system), while for n=n, the
matrix [aij] becomes equal to the identity matrix; [Gij (M) =1. Thus, the final stiffness

matrix [Vj], if A is a compressive partial follower force, due to the 2" of eqs (2) has
elements equal to the elements of the stiffness matrix [U;] minus the corresponding

elements of the matrix X[Qj]. Hence, [V;(A)] is an asymmetric matrix, becoming

symmetric for n =n.. Clearly, the determinant of the generalized stiffness matrix
[Vii(A)] decreases as the compressive load A increases. The second of eqs(2), being the
buckling equation, is a n™ degree algebraic polynomial with respect to A. From this

equation we get )\%) (i=1,...,n), ie. the successive buckling loads. Obviously,
det[V3(\)]> 0 for A <Ay, det[V(A)] <0 for A >A{;, [excluding the case of a double

point 0(n O,)\g) mentioned below], while det[V;;(A)] =0 for A = )\%) . Recall that for a 3-
DOF [2] and a 2-DOF [3] cantilever model we have respectively

k, +k, -2 -k, Ml-nm) O _

o = . &k, +1-1 —1-Am-1O
Vil=g -~k kotl-d -l-A-Dg [Vl=g' P TAC)

A o -1 1-a H n

where k, and k, are stiffness ratios.

The boundary between existence and non-existence of adjacent equilibria (no,kg) is
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established by employing the theorem for implicit functions [5] via the solution of the
system of equations

det[V;]° = d% (det[Vij]C): 0 (4)

evaluated at the critical divergence state C. A typical plot | vs A showing this boundary
(no,kg) denoted by point 0 is shown in Fig. 1. Usually n, is a minimum in the curve n

vs A°. To the left of point 0 we have always dynamic (flutter) instability, while to the
right of this point according to classical analyses we have divergence. However, as was
shown by Kounadis [1], this is not always true, since in the shaded area of Fig. 1 both
types (i.e. static and dynamic) of instability may occur. As aconsequence of this various
phenomena may occur, as for instance:

- Possible failure of Ziegler criterion for establishing the actual critical load in the
shaded area.

- The degree of (nonconservativeness) asymmetry of the stiffness matrix may not be
related to the static (divergence) type of instability, contrary to Huseyin & Leipholz
analysis [6], since as was shown in previous studies a non-potential system with
given degree of asymmetry may exhibit both types of dynamic instability.

- Asymmetric (non-potential) systems with symmetrizable damping and stiffness
matrices may exhibit (contrary to Inman study [7]) dynamic instability.

Subsequently, the nature of the damping matrix [c;] in connection with the existence

of a Hopf bifurcation will be discussed. The pertinent study will be based on a stiffness
matrix [Vj] of general nature and not on the above one of eq. (3) associated with a
concrete cantilever model.

DQUBLE 279 Byuckling Load
BRANCHING \
SOINT \__
\\ /,/"’
< L - DOUBLE ZERS EIGENVALUE
Ve
. ! LUTTE R————at 18% Buckling Locd
Ng bem e e e e - — 2
Fagion of failure of kinetic &
A | | static criterion
BIFURCATICN | !
DIVERGENCE
i |

G n Mo g

Fig. 1. Typical curve n = n(A¢) showing point 0 (boundary between flutter and
divergence instability) and point d (defining the region N, <n <nq for a
double zero eigenvalue or a Hopf bifurcation).

Hopf bifurcation and matrix [cj]

Lagrange equation of motion, eq. (1), after linearization, leads to the following
equation of motion

[o]10 +[c;]q +[Viila =0 (%)
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One can seek solutions of eq.(5) in the form
q=re” (6)

where p is, in general, a complex number and r the corresponding complex vector,
independent of t.
Substituting this expression of g into eq.(5) leads to

L(p)r = ([alp” +[czlp+[VyDr =0 @)

where L(p) = [O(ij]pz-i- [cijlp + [Vij] is a matrix-valued function. Solutions of eq. (5) are
intimately related to the algebraic properties of L(p), and more specifically to the nature
of Jacobian eigenvalues p; (i=1,...,2n) obtained by solving the characteristic (secular)
equation

det L(p)r =[[a; o+ [c; 1P +[V;11=0 )

which guarantees the existence of nontrivial solutions of eq. (5) or (7). Expansion of
eq. (8) leads to the following equation [1]

2n 2n-1 2n-2 —
pT tapT  Fap totay, proy, =0 )

where Q; (i=1,...,2n) are determined through Bocher recurrence formulae.
As stated above eigenvalues (roots) of eq. (8) occur in complex conjugate pairs

Pi=Vit+ Hj (where j=+-1, i=1,.,n and M, v real numbers) with corresponding
complex eigenvectors. Hence, solutions of eq. (5) associated with eq. (6) are of the form

Ae"'cospit and Be'i'sinp;t (10)

which are bounded tending to zero Os t — oo, if all eigenvalues of eq. (9) have negative
real parts [8]. According to Routh-Hurvitz stability criteria a necessary condition in order
that all eigenvalues have negative real parts is ;> 0 for all i, while a sufficient condition
assuring this is all Routh-Hurwitz determinants A; of even (or odd) order to be positive
[8]. Moreover, a necessary and sufficient condition for all eigenvalues to lie in the left-
hand side of the complex plane is A;> 0 for all i. Then, eq. (9) has complex conjugate
eigenvalues of the above form, ie. p;=V;*|j, where v; <0 and ;>0 (i=1,..,n).
Subsequently, we focuse attention on symmetric (potential) systems occurring for N =nc
(Wthh 1mplles Vij = Vji)~

3. SYMMETRIC SYSTEMS
Premultiplying eq. (7) by r' , the transpose vector of r, one can obtain
r* ([ogp? +[eylp +[VyDr =0 (1n

where clearly all quadratic forms are real scalar quantities. Thus, eq. (11) is a 2™ degree
polynomial with respect to p from which we get
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1
P oy E— Fleylr £4)(r ey dn? =40 o I (r " TV, Ir) 50 (12)

Since both [aj] and [c;j] are given symmetric matrices with constant real elements,
only the stiffness matrix [V;] = [V}(A)] depends on A. As the loading increases from zero,
the variation of the madix [Vj(A)] influences the complex conjugate eigenvalues p and
the corresponding complex eigenvectors r.

Assuming, due to physical considerations weak damping, from eq. (12) one can
observe the following:

Case (a)

If matrix [c;j] is positive definite, the quadratic form rT[cij]r is always a positive
quantity for r # 0, while the quantity under the radical of eq. (12) is negative. Then,
eq. (12) yields complex conjugate eigenvalues with negative real parts as long as

A< k(cl) , due to which det[V;] > 0. At the static (divergence) critical state C, occurring

A= k(cl) we have, as stated above, det[Vj (k(cl))] = det[Vij]C =0. Then, eq. (12) has one

zero eigenvalue and one megative eigenvalue. Hence, if the nondissipative system is
stable, the dissipative system is asymptotically stable provided that the damping matrix
[cij] is positive definite.

Case (b)
We consider now the case for which matrix [c;] is positive semi-definite (i.e. when
det[c;]=0). If A< k(cl) , matrix [Vj] is positive definite and then the eigenvalues

(depending on A) of eq. (9) and the corresponding eigenvectors are associated with
rT[cij]r > 0. Thus, from eq. (12) it follows that all eigenvalues have negative real parts. At
a certain value of A, the corresponding quadratic quantity becomes equal to zero, i.e.

r'leglr=0 (13)
Since matrix [c;] is positive semi-definite, eq. (13) implies
[cilr=0 (14)

Introducing eq. (14) into eq. (11) it is deduced that r is also an eigenvector of the
conservative system [9]

([i1p +[VyDr =0 (15)

Clearly, if r is an eigenvector of the nondissipative system (15) satisfying eq. (14), then r
is also an eigenvector of the dissipative system of eq. (7) with corresponding eigenvalue
(resulting from eq. (12)) which is imaginary. Setting p=4jU into eq. (15) one can
determine the eigenvector which is real. Clearly, since [c;] is a positive semi-definite
matrix one of its eigenvalues is zero, and hence

([cy]-0L)r=0 (16)

From this equation [or eq.(14)] one can establish the real eigenvector r for a given
damping matrix [c;]. Then, eq. (12) leads to
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from which we can establish [ as a function of the load A for a given matrix [a].
Introducing r [obtained from eq. (16)] and W’ [obtained from eq. (17)] into eq. (15)
one can determine the critical flutter load Ar which is accepted if

0 <Ay <Af, =0.381966011 (18)

For instance, for a 2-DOF system related to a cantilever damped model [1,2] we have

O+m 10 e ¢ U 2-A -10
[a]= 0 0 (m>0), [cij]=5” " Fand [Vil=QO o 19
ol 1 Oz €220 O-1 1-AQ

We choose the following positive semi-definite matrix: c;;=0.2, ¢y =0.05,
Cip=Cy1 = 0.1.

Clearly, the mass ratio m is a free ranging parameter which will be adjusted so that
inequality (18) be satisfied.

Using eq. (16) we find the eigenvector

r= gl BZ —DB or rj/r, =-0.5 (20)
M0 %D

On the other hand, from eqs (15) and (19) we also obtain

2 2
- +
rl/r2 :_V12 “20'12 = 5 | 1 (21)
Vip—wley —pi(mtl)+2-4
Combining eqs (20) and (21) we find
A=4-(m-1)p’ (22)
From eq. (17) we can determine | as follows
2 10 - 5}\,
= 23
p— (23)
Introducing this expression of U into eq. (22) we find
A=l form#1S) (24)
3-2m
Due to eq. (18), eq. (24) yields
m>7/3 (25)

Clearly, this value of m depends on the structure of the damping matrix [c;]. For m = 2.5
we get from eq. (24) the flutter load

A=2p =025<1$, =0.53-4/5)=0.381966011 (26)
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The last result can also be obtained as follows.
With the aid of the characteristic equation

p* +a,p’ +o,p” +azp+a, =0 27

one can also establish the above value of the flutter load A taking into account that

0 =~ [0.5(1+m)] = 2415
m 20m 0
_1 0
oy =—[m+5-Am+2)] 5
v 0 (28)
a3 =—(0.5-0.25\. 0
m 0
_ 1. -
ay =— (A" —30+1) O
m a
Introducing p = i into eq. (27) we find
2
W =a;/a H
., .0 (29)
and P +a,pu” +a, =0
from which we obtain the necessary condition for a Hopf bifurcation [1]
(0,0, —03)a5 — 00, =0 (30)
Eq. (30) due to relations (28) leads to the following 2™ degree algebraic equation
(2m? - 6m +4.5)\> = (6m? = 23m +21)L +4.5m”> - 21m +24.5=0 (31)
which has a double root, and hence
6m® -23m+21 _7-3m
Ay =A@y =Ap = = (32)

C 4m?-12m+9  3-2m

Thus, we have rederive formula (24).

From the above analysis, one can infer the following important conclusions:
If the damping matrix [c;] is positive semi-definite, then under certain conditions
associated with the magnitude of the mass ratio m, the symmetric (potential) systems,
contrary to widely accepted (classical) findings, may exhibit a Hopf bifurcation (i.e. limit
cycles).

Moreover, it is worth observing that although such a local bifurcation corresponds to
a pair of purily imaginary eigenvalues, the corresponding eigenvector is real.
Furthermore, in case of a 2-DOF model the necessary condition® for a Hopf bifurcation
leads to a 2™ degree algebraic polynomial in A which has a double root, being the
critical flutter load A i.e. A =Ag. Note also that if m is kept constant and A is slightly

® This condition is also satisfied in case of existence of equal and opposite sign roots [8].
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higher than Ag (i.e. X(Cl) >\ > g ) the system yields a point attractor response. This is so,

since excluding the case A = Ag (i.e. for A Z Ap), the quadratic form FT[cij]r ineq. (12) is

positive and thus its real part is negative. Hence, as the loading A increases gradually
from zero, at a certain value of A, the symmetric system exhibits an isolated Hopf
bifurcation with a double root of eq. (31).

In closing with case (b), one can observe that if the generalized stiffness matrix [Vjj]

is positive semi-definite (occurring for k=k8)), eq. (12) yields a zero eigenvalue

corresponding to divergence (static) instability.
Case (c)

We now consider the case of an indefinite (symmetric) damping matrix [c;]. From a brief
discussion one can observe the following:

For A sufficiently small, the quadratic complex form rT[cij]r takes positive values
and thus from eq. (12) it is clear that all eigenvalues p have negative real parts. Then, the
system exhibits a point attractor response. At a certain value of A, this form vanishes
yielding a pair of purily imaginary eigenvalues (case of a Hopf bifurcation, i.e. A = Ag).
For A slightly higher than Af, the quadratic form becomes negative and thus a pair of
eigenvalues has positive real part. The trivial state is locally unstable but globally stable.
This situation of hounded amplitude oscillation is called flutter. Flutter occurs also when
there exists one pair of complex conjugate eigenvalues with positive real part.

Case (d)
Another important case is associated with a positive semi-definite stiffness matrix [Vj]
(e |Vj (klc) |=0) which will be discussed in connection with a positive semi-definite

damping matrix [c;j]. The question that now arises is which must be the structure of the
matrix [c;] so that

A=A 33)

From eq. (12) it follows that in this case we have a double zero eigenvalue (clearly,

v == 0). On the other hand the necessary condition for a Hopf bifurcation in terms of
Routh-Hurwitz determinants is given by

Agnoy =0y Moy =05 My, =0 (34

where M,,.;, and M,, are the minors (determinants) of the elements O,,.;, and 0, of the
matrix A,,.;, whose expression is [2]

a, 1 0 0 O
a; o, o 1

Appoy =las 0y a3 0 1 e (35
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Clearly, if 05,1 = 05, =0, eq. (9) has a double zero eigenvalue [2,10] but at the same time
the equation for a Hopf bifurcation is satisfied. Then, the corresponding solution is
associated with a limit cycle response [1]. The critical (trivial) state is unstable but the
global response is stable. Such a situation is called coupled divergence-flutter instability.
Namely, the last case corresponds to a special type of Hopf bifurcation.

4. NUMERICAL RESULTS

In this section numerical results under graphical form in the form of phase-plane
portraits illustrate and confirm the above theoretical findings. Symmetric (potential)
systems of 2-DOF, weakly damped, cantilever (Ziegler's) models experiencing stable
limit cycles related to a Hopf bifurcation (Fig. 2), to flutter (Fig. 3) or to a double zero
eigenvalue (Fig. 4) are presented below.

€, =001, ¢, =-00325,c,, =0.012 Hopf bifurcation

2 D.0.F. symmaetric
- system

N Ay = 0.1936984 < A% Linearized analysis
0.0010 - ~ ®
m=10 ; limit cycle
e H i | (see dstail)
0.0005 :
8 § i m\
0.0000 -
-0.0005
. o L £1,10922130; (pure imaginary)
phase plane porirait -0.00385 = 0.19256582j (compiex conjugate
-0.0010 1 I with segative real part)
-0.004  -0.003  -0.002  -0.001 0.000 0.001 U0 U003 TI0%
8,(t)

Fig. 2. Hopf bifurcation for a 2-DOF symmetric damped system.

2 D.O.F. symmetric system
Phase plane portrait

Linearized analysis
0.0010

€ =0.01,¢;,=-0.0325,¢c,,=0.012
Moy~ 0.1936984< 2 =038 <2%;, Fi-%-
m =10

~0.0043433 £ 0.02006979j
0.0004933 . 1.02151507]

0.0005

6,(v)
0.0000 =

onos L ww \/v\\/\/\/y\/\’,

0.020

-0.010  -0.005 0.000 0.005 0.010 0.015 0.025

8,(t)
Fig. 3. Flutter instability (with a pair of complex conjugate eigenvalues with positive
real part) associated with stable limit cycles.
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[ Double zero eigenvalue

2-D.0.F. symmetric system n=1,m=1
¢, = 0.80

phase plane portrait
Cyp = Cyy = 0.494427

Limit cycles 8,() C = 0.305572572

£=010

N A= A%, = 0.381966011
vy, = 1618033989

V4 N Vig =V = -1

; vz = 0.618033989
/
\_// 8,(x)

Fig. 4. Double zero eigenvalue bifurcation for a 2-DOF symmetric damped system
associated with stable limit cycles.
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HOPF-OVE BIFURKACIJE | NESTABILNOSTI FLATERA
AUTONOMNIH POTENCIJALNIH DISIPATIVNIH SISTEMA

Anthony N. Kounadis

Ovaj rad se bavi idealnim bifurkacionim diskretnim disipativnim sistemima sa trivijalnim
prekriticnim stanjima pod dejstvom glavnog konzervativnog pritisnog optereéenja. Paznja je
usmerena na uslove pod kojima ti simetricni autonomni slabo priguseni sistemi mogu ispoljiti
odgovor tipa granicnog ciklusa usled Hopf-ove bifurkacije ili usled dvostruke nule sopstvene
urednosti ili nestabilnosti tipa flatera.



