
UNIVERSITY OF NIŠ
The scientific journal FACTA UNIVERSITATIS

Series: Mechanics, Automatic Control and Robotics Vol.2, No 7/2, 1997 pp. 545 - 560
Editor of series: Katica (Stevanovi}) Hedrih, e-mail: katica@masfak.masfak.ni.ac.yu

Address: Univerzitetski trg 2, 18000 Niš, YU, Tel: (018) 547-095, Fax: (018)-547-950
http:// ni.ac.yu/Facta

SOME ALGORITHMS FOR OPTIMAL STATE ESTIMATION
AND OPTIMAL CONTROL CHOICE

FOR STOCHASTIC SYSTEMS    

UDC: 681.5

Vlastimir Nikolić

Faculty of Mechanical Engineering, University of Niš, Beogradska 14, Niš
Yugoslavia, Phone: +381 18 352166,   Fax: +381 18 352780

Abstract. In this paper some approaches to the control of stochastic systems have been
considered. Algorithms for optimal state and parameters estimation for stochastic
systems, with constant and changeable structure, have been presented. For systems
with changeable structure it is assumed that change of structure is random and
represents Markov’s process. On the basis of algorithms for optimal state variables and
parameters estimation, corresponding algorithms for choice of the optimal control have
been formed. Challenge for investigations in this field is to find adaptive algorithms for
improving the accuracy of estimation, and thus of control, in cases when priors
describing stochastic disturbances are not exact enough. In such cases alternative
techniques based on application of fuzzy logic in control systems can be used.
Performance and robustness of the fuzzy PI controller and stochastic LQG optimal
controller have been compared for a pneumatic servo system, in case when random
disturbances act upon the system.
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1. INTRODUCTION

Systems with random disturbances are step towards the accurate mathematical
description of the object and observation process, and are very common in all technical
fields today. Therefore, for the last twenty years this area of automatic control has been
deserving special attention, what yielded significant results. It is most likely that research
in this area will be important and also combined with alternative techniques from the
domain of soft computing, especially with fuzzy logic control structures.
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In this paper authors have reviewed some results which they have obtained while
researching this area. Results in this paper prove that results obtained in the stochastic
control theory generally provide very good quality of the control for the systems exposed
to random disturbances [21] [28]. However, attention are gaining alternative control
techniques, based on the elements of soft computing [22] [23] [24]. Way to practical
applications have found fuzzy controllers above all [25] [26] [27], so further expansion of
their presence in control systems can be expected. Some results that indicate possibilities
for application of the fuzzy control structures as alternative to conventional stochastic
systems are also presented in the paper.

2. OPTIMAL STATE AND PARAMETERS ESTIMATION AND CHOICE OF THE
OPTIMAL CONTROL FOR STOCHASTIC SYSTEMS

Algorithms for optimal state and parameters estimation of linear and non-linear
dynamic systems [7] [8] [9] [10] with one structure, which are based on Kalman
algorithm [12] are considered. Attention are deserving adaptations of this algorithms,
what represents dominate task in further research of this area. On the basis of well known
results from deterministic [1] [4] [5] and stochastic [6] [12] control theory, two simple
but highly applicable algorithms have been considered.

Random structure of stochastic processes in control systems [20] raises a range of
new tasks that need to be solved in the modern stochastic theory of dynamic systems.
Some results concerning problems of estimation-optimization and design of the
corresponding control laws [13] are presented. State estimation for the non-linear systems
with random structure, as well as design of the optimal control for such systems,  by
using algorithms of the direct and inverse dynamic programming, have been considered.

3. CONTINUOUS AND DISCRETE KALMAN STATE ESTIMATOR (FILTER) AND THEIR
ADAPTATIONS

By application of classic variance calculus [4], Kalman and Busy have formed non-
linear Riccati differential equation for determination of error covariance matrix of the
optimal continuos filter [12]. Although discrete version of the filter is dominant in
practical applications because of its suitability for implementation on digital computers,
theoretical significance of the continuos Kalman-Bucy filter is large. Basic information is
object model, defined with state and output equations:

)()()()( twGtuBtxAtx ++= ,    )()()( tvtxCty += . (1)

Statistical characteristics of the disturbance and measurement noise (priors) are:

;0)}({;0)}({ == tvMtwM  )(])(),(cov[ τδτ −= tQwtw , )()](),(cov[ τδτ −= tRvtv

0)](),(cov[)](),(cov[)](),(cov[ === τττ vtxwtxvtw , (2)

where Q(t) and R(t)  are continuos positively defined covariance matrices, and (t- )
is Dirac's function. Optimal state estimator is defined with differential equation:
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)()](ˆ)()[()(ˆ)(ˆ tuBtxCtytKtxAtx +−+= . (3)

Matrix of the Kalman gains K(t) is defined with:

0
1,)()()( tttRCttK T ≥Σ= − . (4)

Estimation error covariance matrix )}(~)(~{)( txtxMt T=Σ  satisfies Riccati's equation:

)()()()()()()( 1 tCtRCtGtQGAttAt TTT ΣΣ−+Σ+Σ=Σ − . (5)
Also

],cov[)()},({)(ˆ 000000 xxttxMtx =Σ=Σ= . (6)

Steady state Kalman-Bucy filter is defined with:

01 =ΣΣ−+Σ+Σ − CRCGQGAA TTT , 1−Σ= RCK T ,  )()](ˆ)([)(ˆ)(ˆ tuBtxCtyKtxAtx +−+= . (7)

Among the proposed recursive algorithms based on different approaches to the
estimation problem, algorithm based on the minimal estimation variance is commonly
used. System behavior and observation process are defined with:

kkkk wGuBxAx ++=+1 ,     kkkk
vuDxCy ++= . (8)

Statistical characteristics of the disturbances (priors) are the same as previously
defined.

Recursive algorithm for estimation of the state vector xk of dynamical Markov's
stochastic process given with the equations (8) is defined with:

kkk uBxAx +=+ ˆ1 ,  T
k

T
kk GQGAA +Σ=Σ +1 ,  1)( −+ΣΣ= k

T
k

T
kk RCCCK ,

)(ˆ kkkkkk uDxCyKxx −−+= ,  kkk CKI Σ−=Σ )( ,  kkk
uDxCy += ˆˆ . (9)

If controlled object is stationary, and disturbances and measurement noises are also
stationary stochastic processes, non-stationary Kalman filter reduces to steady-state filter.

For discrete model of water treatment plant described with equations (8), where:
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in Figures 1 and 2 real system output, sensor signals, estimated output and change of
estimation error are shown, while change of the elements of the output estimation error
covariance matrix is shown in Figure 3.
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Besides the algorithm of the so-called b-modification which authors developed for the
non-linear systems [11], and that can also be used for linear systems, two similar
algorithms are presented here. First adaptive algorithm starts from the system description:

kkkkk wGxAx +=+1 ,    
kkkkkkk

xCy βγαγ )1( −++= , (10)

Array k is formed with independent random variables that can have values 0 and 1
with probabilities qk and pk:

kkk qpP −=== 1]1[γ . (11)
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Fig. 1. Real system outputs and signal y(t) Fig. 2. Outputs estimated by Kalman
generated by sensors filter and estimation error

Random m-dimensional vectors k

and k are independent Gaussian
random values with covariance
matrices R k and R k respectively. It is
assumed that pk << qk, what cor-
responds to case when in measurement
channel common noises k are present,
with rare occurrence of noises of vast
intensity k, which correspond to the
anomalies in observation model.

Algorithm of the adaptive estima-
tion is based on the idea of classifica-

tion of observation results yk in two groups, that correspond to disturbances k and k,
with modification of the estimation algorithm by considering real disturbance model.
Methodology of Bayesian solutions is used [10].

Adaptive algorithm for obtaining stable solution x k  is described with:

kkk xAx ˆ1 =+ ,  kkk
T
kkkk GQGAA +Σ=Σ +1 ,  kk

k
kkkk CKxx Σ
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estimation error covariance matrix
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where

}ˆ,),0(ˆ{ˆ
k

k
γγ=Γ , (13)

while estimate k  of the k is determined by using Bayesian solutions [10].
If discrete linear system is described with difference equations

kkkkk wGxAx +=+1 ,  kkkk
vxCy += ,   (14)

Kalman algorithm for state estimation significantly relies on exact knowledge of
covariance matrices Q and R. However, in many practical cases those matrices are not
known, or can be known only approximately. In such cases adaptive modification of the
classical Kalman filter can be formed [16], that can be effectively applied when
information on matrices Q and R are not known. Algorithm of the adaptive estimation
starts from the relation:

kkk
xCyy −=∆ ,   (15)

Value yk involves new statistical information, which is gained from the observation
yk , and estimates of the covariance matrices Q and R can be obtained from it.

In steady state matrix of the filter gains K and also matrix  remain constant:

1)(ˆ −+ΣΣ= RCCCK TT ,  TTTTT GQGAKRKAACKICKIA ++−Σ−=Σ )()(ˆ . (16)

From the relation
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0 ≥−Σ−= − kCKCACKIACC Tk .   (18)

Essence of this algorithm of adaptive filtration is that by using priors about Q0 and R0,
unknown covariance matrices, to obtain their more accurate estimates and accordingly
calculate corresponding state estimates.

Estimates of the covariance matrices arme realized by using the following algorithm:
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where T + is pseudoinversion of matrix

[ ] AACACCT
Tn  1−= . (21)
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Estimate R̂  of covariance matrix R is obtained from matrix equation:
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Estimate Q  of covariance matrix Q is obtained from the system of matrix equations:
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4. OPTIMAL CONTROL FOR STOCHASTIC SYSTEMS

There are various possibilities for state estimation with linear and non-linear control
systems to be used for design of the optimal control laws [1] [6] [17].

Filter and controller can be combined so that resulting control law is proportional-
integral, similar as with observer. Therefore, if system described with equations (1) is
considered, where )(tw ξ= , linear optimal controller for maintaining of the desired steady
state xd = 0 and ud = 0 is determined with:

wKxKu ˆˆ 21 −−= .   (25)

Estimation of the state vector and disturbance is realized by the algorithm:

]ˆ[ˆˆˆ 1 xCyKwGuBxAx e −+++= ,  )ˆ(ˆ 2 xCyKw e −= , (26)

where matrix coefficients Ke1 and Ke2 reach steady states in time, and control law
becomes:

∫∫ −+−=
t

e

t
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22
0

221 ˆˆ . (27)

For stochastic systems described with equations (1) optimality criterion [6]
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optimal control is determined with relation:

)()(ˆ)()( 1 tSBEtxtKtu T−−=−= ,  ff
TT StSFSBEBSSAASS =−+−−= − )(;1 . (29)

For asynchronous motor [2][3] with characteristics Pn = 100 kW, s = 78,53 rad/s,
MN = 1300 Nm, JN = 6 kgm2, fN = 50 Hz, J = 2 JN, change of the motor speed for
uncontrolled and optimally controlled motor is shown in Figures 4 and 5.
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Optimal control has been determined by the expression (29), for linearized motor
model, while the state estimates are determined with non-linear filter [10]. It can be
concluded that optimally controlled system is insensitive to the variations of random
moment acting upon the output motor shaft.

 
Fig. 4. Variation of the motor speed upon Fig. 5. Motor speed change as function

the act of stochastic load moment of the stochastic load moment

5. OPTIMAL CONTROL FOR STOCHASTIC SYSTEMS WITH RANDOM STRUCTURE

State estimation for the systems with random structure represent separate problem.
Case of the Poisson type structure change with functions ν ,r(t), ,r∈ [1,s] of the new
structure occurrence is considered here. Functions of the disappearance and occurrence in
Gaussian approximation are of the form:

),(ˆ)(),( )(
10 txPttx rr νν = , ),(ˆ)(),( )(

10 txPttx r
rr νν = ,   (30)

where ),()(
10 txP  is Gaussian probability distribution. Corresponding algorithm of the

optimal estimation [20] for non-linear system defined with equations:
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where w(t) and v(t) are Gaussian processes, white noises with zero mathematical
expectations, is of the form:
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Equations (32) describe filtration block (Figure 6) and for various values l are
connected with function N  of the form:

]ˆˆ)[(
)(ˆ
)(ˆ )()(

1

lr
r

s

r

r xxt
tP
tPN −= ∑

=
ν . (36)

Output signals from filter represent
the best estimation of state vector of
each structure. Equations (33) deter-
mine fltration accuracy (correlation
matrices) while relations (34) describe
block of  structure estimation (iden-
tificator) and realize control by
switching on the filter output.

In [18] [19] [20] algorithms of
continuos-discrete dynamic program-

ming for optimal control choice for non-linear systems with one structure have been
proposed. In the similar manner relations can be obtained that form the algorithm for
optimal control choice for systems with random structure when each structure is
considered independently. In that case, just as it is when algorithms for systems with one
structure are considered, optimal estimations of the state variables or discrete
distributions of the probability densities can be used alternatively. To the contrary to the
system of equations (31) that has been used as basis for most of the optimization methods
described in the literature [4][15], methodology for optimal control choice described here
starts from the stochastic non-linear model of the most general type:

],,[ )()()( wuxfx = . (37)

Optimality criterion has one of the following four forms:
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where  is a scalar function, w mathematical expectancy and  number of the
discretization steps of constant length.

Direct algorithm of continuos-discrete dynamic programming which uses distribution
of probability densities is described with equations:
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Fig. 6. Block diagram of state estimation



Some Algorithms for Optimal State Estimation and Optimal Control Choice for Stochastic Systems 553
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Direct algorithm of continuos-discrete dynamic programming with optimal
estimations is of the form:

[ ]
)]}0(ˆ[]),(ˆ[{inf)](ˆ[ )(

0

)()()(0

)1,(

)(
)1( )()( µµµµµµ

µµ
µµ

µ

xJdtutxfdxJ d

d

ddDu
d += ∫

+∈
+ ,

[ ]
}]),(ˆ[{inf)](ˆ[)]0(ˆ[

1

0 0

)()()(0

)1,(

)(
1

)(
)()( ∑ ∫

−

=+∈
− ==

µ

µµµµ
i

d

iiii
diidDu

dd dtutxfdxJxJ
i

,

µ

µµµµ
t

xxtx
0

)()()( ˆ)0(ˆ)(ˆ += ,   
d

xxdx
0

)()()( ˆ)0(ˆ)(ˆ µµµ += .   (40)

For =0:

[ ]
})]0(ˆ[0]),(ˆ[{inf)](ˆ[

0

)(
00

)(
00

)(
0

)(0

,0

)(
01 )()(

0
∫ +=

∈

d

d
dDu

d xJdtutxfdxJ ,

0)]0(ˆ[ )(
00 =xJ d ,   ].,1[;,...,2,1;1,...,2,1,0],,0[ sKjNdt ∈=−=∈ µµ  (41)

Estimates of the state variables are obtained with described algorithm for optimal
state estimation for systems with random structure.

Authors have also published corresponding variants of the inverse algorithms of the
continuos-discrete dynamic programming for optimal control choice for systems with
random structure [14]. Algorithms of inverse and direct continuos-discrete dynamic
programming can be used in cases when choice of optimal control is not performed for
each structure independently. In that case discrete form of the used optimality criterion is:

∑ ∑
=

−

=
=

s N

k
kkkw wuxfMJ

1

1

0

)()()(0 )],,([   or ∑ ∑
=

−

=
=

s N

k
kk uxfJ

1

1

0

)()()(0 ),ˆ( ,  (42)

depending of whether the probability density distributions or optimal state estimations
are used.

Corresponding algorithms for optimal control choice are obtained in the similar
manner as when each structure is considered independently, except that equations that
take structure change into account are also added, that is equations from which state
probabilities are determined.

Described techniques can be demonstrated on the example of mechanical system
shown in Figure 6, which has two structures described with equations:
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Fig 6. Mechanical system with 2 structures

Task is to determine optimal control for the first structure (procedure for the 2nd is the
same) that minimizes function:
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Task of the optimal control choice is solved by application of the inverse algorithm
of the continuos-discrete dynamic programming [14], while as the optimality criterion in
the first case expression (43a) has been used, and in the second case optimality criterion
expressed with the optimal estimation of the state variable ( )x 1 , defined with (43b).

Under described conditions it follows:
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Realization of this algorithm yields
values of the optimal control u *( )1  and
optimal trajectories for =0,1,2,3,4,5,6,
7. The same values, shown in Table 1,
are obtained no matter whether the
algorithm with the probability density
distribution or with optimal estimation
of state variables is used.

In the similar manner task can be
solved by application of the presented

Table 1. Values of the optimal control

( )*( )x 1 0 x*( ) ( )1 0 u *( ) ( )1 0
1,0282 1,0000 -1
1,2281 1,2040 -1
1,3376 1,3174 -1
1,4213 1,4380 -1
1,5485 1,5620 -1
1,6708 1,6835 -0,90
1,7739 1,7852 -0,90
1,9167 1,9272 0
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direct algorithms of the continuos-discrete dynamic programming.

6. CONTROL OF PNEUMATIC POSITION SERVOSYSTEM:  STOCHASTIC VS. FUZZY

In Figure 7 pneumatic position
servosystem is shown, which is
based on pneumatic servo cylinder.
Approaches to the control of the
above system are considered in
[32] [31] [33], while in [29] an
analytical-experimental linearized
model of the pneumatic servo
cylinder of the maximal stroke of
150 mm has been presented. When

system is exposed to random disturbances, that is external force F(t) has random
character and measurement of the cylinder position is not accurate but disturbed with
noise, control has to provide for the minimization of the act of random disturbances upon
the system.

For the considered system optimal stochastic LQG controller can be proposed, and
its design can conveniently be carried out by the so-called polynomial approach [30],
developed by Grimble [28]. As the natural opponent to the optimal LQG controller, for
the considered pneumatic servo system fuzzy PI controller can be proposed, which
represents standard solution from the field of fuzzy control.

Polynomial approach to the LQG optimal controller design is based on general
representation of the discrete scalar time invariant system in polynomial form. Problem
of the synthesis of the optimal stochastic LQG controller is reduced to determination of
the controller transfer function C0(z) that minimizes given quadratic optimality criterion:

)},()({ 22 tuRteQEJ cc +=    or   )}()({ 22 tuRtyQEJ cc += (for zero reference),  (44)

where E{.} denotes unconditional expectation, and Qc, Rc
  are positive weighting factors.

Optimum has to be reached while minimizing effects of the disturbance and measurement
noise. Transfer function of the LQG optimal controller, on the basis of polynomial
approach and for the considered system description and criterion (44) is obtained by
finding the solution of the corresponding Diophantine equation. Discrete model of the
considered pneumatic servo in the form of transfer functions suitable for the considered
polynomial approach to the LQG controller design is of the form:
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If the system is affected by the disturbance and measurement noise of the low
intensity, defined with variances R = 0.0001,  Q2 = 0.01, cost function to be minimized
and finally the discrete transfer function of the LQG controller [30] is determined, where
cascade PI controller is also introduced to provide for the elimination of the steady-state
error:

F(t)

y(t)

u(t)e(t)r(t)
+ Controller
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Fig. 7. Pneumatic position servosystem
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)},()({ 22 tuRtyQEJ cc += Qc
 = 1, Rc = 0.0001 
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To the contrary to the LQG controller, for the synthesis of the fuzzy PI controller
mathematical model of the controlled pneumatic servosystem is not required. Inputs of
the fuzzy PI controller are error e(k) and its difference e(k) while the output is the
increment of the control u(k). The controller is of the discrete incremental type, and
domains of the inputs and output are transformed to the normalized closed interval [-1,1]
and vice versa. Fuzzy partitioning of the input/output variables is accomplished by choice
of the 7 primary fuzzy sets, labeled with linguistic labels that appear in fuzzy control
rules, and for which triangular membership functions are chosen. If singleton
fuzzification is applied, and for 49 fuzzy control rules, Mamdani's minimum operational
rule and COG defuzzification, controller is defined with:
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Step responses of the system controlled with LQG and fuzzy PI controller are
shown in Fig. 8. In the absence of disturbances (Fig. 11(a)) both controllers perform well.
When system is affected by disturbance and measurement noise (variances R = 0.0001
and Q2 = 0.01, Fig. 8(b)), LQG optimal controller also provides very good control quality,
which does not surprise considering that real system and disturbances exactly match the
models that have been used for controller design. As the intensity of the disturbances is
relatively weak, fuzzy PI controller in its basic form provides good quality of control,
with the design parameters unchanged in comparison with previous experiment.
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Fig. 8. System responses with various disturbances and controller realizations
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When system is affected by the disturbances of the greater intensity, defined with
variances Q2 = 0.1 and R = 0.01, control systems have to be adapted according to the new
requirements. For the optimal LQG controller it is:

)},()({ 22 tuRtyQEJ cc +=   Qc
 = 100,  Rc = 0.02.    
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To improve filtration capabilities of the fuzzy PI controller, non-singleton
fuzzification is applied. Gaussian membership functions have been adopted, which yields
to the modifications described in the case of vehicle parking control case. Unit step
response of the system affected with described disturbances (Q2 = 0.1, R = 0.01) is shown
in Fig. 4(c), when system is controlled with non-singleton fuzzy PI controller  and LQG
optimal controller . It can be concluded that non-singleton fuzzy controller maintains
performance quite comparable with LQG optimal stochastic controller.  For the sake of
comparison,  in Fig. 4(d)  step response under the same disturbance conditions is shown,
but when system is controlled with singleton fuzzy PI controller and with classical PI
controller, which proves that both non-singleton fuzzy PI and LQG controller provide
good filtration capabilities in comparison with their basic configurations.

In Figure 9 unit step responses of the system controlled with non-singleton fuzzy PI
controller and LQG controller are shown, when system is affected by the disturbance
with variance Q2 = 0.1 and by measurement noise with variance R = 0.1. Parameters have

been kept the same as in the previous
experiment, which means that synthesis of
the controllers have been done with wrong
priors indicating 10 times smaller variance
of the measurement noise R = 0.01.

It is obvious that when divergence
of disturbances from the prior information
which is used for controllers design and
tuning exists, deterioration of performance
of both controllers occurs. Results indicate
that fuzzy controller has somewhat better
robustness. Bearing in mind that need for
reliable priors represents one of the main

drawbacks of the stochastic controllers, robustness of the fuzzy control systems with
respect to the disturbances' effect is highly significant, especially because some results
indicate that fuzzy controllers can often be adopted as robust and numerically simpler
alternative to conventional stochastic controllers [24]. Robustness of the both control
systems in case of inaccurate priors can be significantly improved by introducing
adaptation mechanisms [32] [28] [27].

7. CONCLUSION

In this paper attention has been paid to the choice of optimal control for stochastic
systems. Starting from well known results from deterministic and stochastic optimal
control theory, two simple but highly applicable algorithms have been considered. One of
them has been used for optimal control design for asynchronous motor and those results
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Fig. 9. Responses with inaccurate priors
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have also been presented in the paper.
It is well known that random structure of stochastic processes in control systems

raises a range of new tasks that need to be solved in the modern stochastic theory of
dynamic systems. In this paper author has presented only part of results of his research in
this field, that consider state estimation for nonlinear systems with random structure, as
well as optimal control choice for these systems, by using methods of the direct and
inverse continuos-discrete dynamic programming.

Although quality of the control that can be obtained with stochastic controllers when
reliable priors and object model exist is very high, possession of those information is
extremely rare in practice. Conversely, as it has been considered in the paper, robustness
of fuzzy controllers indicate that in many cases they can be adopted as numerically
simpler alternative to conventional stochastic systems. Also, significant results in the
field of noise filtration have lately been obtained with use of soft computing techniques
and especially neural nets [24].
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NEKI ALGORITMI ZA OPTIMALNU OCENU
VELIČINA STANJA I IZBOR OPTIMALNOG UPRAVLJANJA

KOD STOHASTIČKIH SISTEMA
Vlastimir Nikolić

U ovom radu su razmatrani neki pristupi upravljanju stohastičkim sistemima. Prezentirani su
algoritmi za optimalnu estimaciju stanja i parametara kod stohastičkih sistema, sa konstantnom i
promenljivom strukturom. Za sisteme sa promenljivom strukturom pretpostavljena je slučajna
promena strukture i da predstavlja Markovljev proces. Na osnovu algoritama za optimalnu
estimaciju stanja i parametara formirani su odgovarajući algoritmi za izbor optimalnog
upravljanja. Izazov za istraživanje u ovoj oblasti je pronalaženje adaptivnih algoritama za
povećanje tačnosti estimacije, a na taj način i upravljanja, u slučajevima kada apriorne
informacije o stohastičkim poremećajima nisu dovoljno tačne. U takvim slučajevima mogu uspešno
biti primenjene alternative tehnike zasnovane na primeni fazi logike u upravljačkim sistemima.
Performanse i robusnost fazi PI kontrolera i stohastičkog LQG optimalnog kontrolera upoređene
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su za jedan pneumatski servosistem, u slučaju kada na sistem deluju slučajni poremećaji.

Ključne reči: upravljanje, stohastički sistemi, estimacija stanja, optimalno upravljanje, fazi
upravljanje, filtracija, estimacija, LQG upravljanje


