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Abstract. The paper addresses the role of dynamics in the control of robots interacting
with a dynamic environment. The objective is to define is it necessary to include
compensation for the different dynamic factor in the position/force control law. Starting
from the complete dynamic model of the robot and of the environment, the effects of
different dynamic factors upon position and force control of the robot are analysed. The
control law based on complete inverse dynamic model and the decentralised control
law are compared. The dynamics effects are first qualitatively analysed, and then an
approach to explore these effects based on analysis of the practical stability of
manipulation robots in the constrained motion control tasks is presented. The
elaborated stability test can be used to check for each particular robot structure and
environment and for different control tasks which dynamic effects have to be taken into
account.

1. INTRODUCTION

The problem of effects of dynamics upon the control of manipulation robots has been
a subject of a number of studies. Different dynamic control laws (i.e. control laws which
include explicit compensation for effects of dynamics upon the robot performance and
tracking of desired trajectories) have been proposed. In our previous books and papers [1-
3] we have analysed the role of the dynamics in the free motion control of robots. The
conclusion has been that the effects of dynamics have to be explicitly compensated by the
control law if accurate tracking of the fast nominal trajectories has to be achieved,
otherwise more simple (and more robust, less sensitive to model and parameter
uncertainties) decentrilised control laws can be effectively applied.

In this paper we shall address the effects of dynamics of the robot and of the
environment in a control of the robot interacting with the dynamic environment. The
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synthesis of the control of robots in the tasks in which manipulation robots are coming
into a contact to the environment, attracts high attention in last 15 years. A number of
control laws have been proposed which include explicit compensation for different
dynamic effects. Numerous papers have considered the stability aspects assuming
different approximate models of the robot and the environment [4-7] It has been
recognised [7] that the dynamics of robots is playing very important role in this class of
the manipulation robot tasks. In [4-6] the control laws stabilising simultaneously the
robot motion and its interaction forces with a dynamic environment have been
synthesised, ensuring exponential stability of the closed loop systems. It is obvious that
the compensation of dynamic effect may contribute to improve robot tracking of the
desired trajectories. However, one of the main problems in a synthesis of dynamic control
laws represent uncertainties in the dynamic models of the robot and, specially, of the
environment. A complete analysis of the necessity to explicitly compensate for different
dynamic effects (both robot dynamics and the environment dynamics) has not been
carried out up to now.

The objective of the paper is to establish a procedure to test which dynamic effects
have to be compensated for by a control law under given conditions (manipulation robot
structure, environment dynamics, required perfomance, i.e. speed, accuracy, etc.). This
procedure has to give an answer to which extend a dynamic control laws are needed in
this special class of robotic tasks. We shall start from the complete dynamic model of the
robot and the environment, and from the most general formulation of the control task.
Then, two control laws will be considered: one which completely compensates for all
dynamic effects, and the one (so-called decentralised) control law without any explicit
compensation for these effects. A qualitative analysis of the effects of dynamics will be
carried out by comparing these two laws. Next, a procedure to test the efects of the
dynamics will be presented based on the practical stability analysis. The conditions for
the practical stability of the robot interacting with the dynamic environment have been
derived in our previous papers [8,9]. In this paper we shall apply a new, improved
stability test, derived based on the decomposition-aggregation principle, which enables
better to study the dynamic effects upon the robotic system performance.

2. MATHEMATICAL MODEL

We shall consider a robot in a contact a with dynamic environment, assuming that the
contact is permanently maintained. An important problem of keeping of contact and
impact between the robot and environment (i.e. discontinuity of the model since the robot
can only push and not pull the environment) is out of the scope of this paper (and will be
a subject of our future work). The complete dynamic model of the robot with n (n≤6)
degrees of freedom and the dynamic model of the environment (described by the second-
order differential equations) are considered in Cartesian space. The model of dynamics of
the mechanical part of the robot (in Cartesian space) can be written in the form:

FdpJdpppdp T +=+Λ − τρ ),(),,(),( (2.1)

where p = p(q) is the 1nx  vector of the robot Cartesian coordinates, while q is the n×1
vector of the robot internal coordinates, L(p,d) is the nxn  inertia matrix, ),,( dppr  is the
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n×1 nonlinear vector function of Coriolis, centrifugal and gravity moments, d  is the 1x1
vector of parameters which belongs to the constrained set D, J(p,d) is the n×n  Jacobian
matrix, t is the n×1 vector of driving torques1 (inputs), F is the m×1 vector of Cartesian
forces, generalised interaction forces (forces and moments) acting upon the end-effector
of the robot. In this paper we shall consider the case n = m. For the sake of simplicity we
shall write functions without arguments.

The model of dynamic environment can be writte in the form:

SFdppLpdpM −=+ ),,(),( (2.2)

where M is the n×n matrix, L is the n×1 nonlinear vector function, and S is the n×n
matrix expressed by Cartesian coordinates, with a rank equal2 m = n. We chall assume
that S = I. It is assumed that all mentioned matrices and vectors are continuous functions
of their arguments. The model of the robot in the state space can be defined in the
following form:

FdxGdxBdxfx ),(),(),( ++= τ (2.3)

where TTT ppx ),(=  is 2n×1  state vector, f(x,d) is 2n×1 vector function, B(x,d) is 2n×n
matrix, G(x,d)  is 2n×m matrix.

3. DEFINITION OF CONTROL TASK

Let us assume that in m1 directions (m1 < m) desired force trajectories F 01(t) are
specified, where F 01(t) is m1×1 vector, while in 1n  directions desired trajectory x1(t) is
specified, where x1(t) is n1×1  and where n1 + m1 = n. Note that the meaning is following:
in some directions only forces are specified, in some directions only desired position
trajectories are specified. Let us introduce the following notations: p0(t)=(p01T(t),p02T(t))T,
where p02T(t) is (n−n1)×x vector of the nominal trajectories of the Cartesian coordinates in
the directions in which force trajectories are specified. Note that the trajectories p02T(t)
are not specified in advance, but have to be determined based on the model of the
environment. Similarly the vector of desired force trajectories can be denoted as
F0(t)=(F01T(t),F02T(t))T,where F02T(t) is (m−m1)×1 vector of the nominal force trajectories
in directions in which forces are acting upon the robot, but the nominal trajectories of the
Cartesian space coordinates are specified. The force trajectories (F02T(t)) are not specified
in advance, but have to be calculated based on the dynamic model of environment. The
nominal trajectories of the forces and of the Cartesian coordinates must satisfy the model
of the environment i.e.:

)())(),(()())(( 00000 tFtptpLtptpM −=+ (3.1)

Let us introduce the following notations:

                                                          
1 For the sake of simplicity we shall consider the second order models of actuators, which are assumed to be

included in the robot dynamic model.
2 This is the property of the environment dynamic model (2.2) that its solution is unique with respect to the

force F.
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where dimensions of matrix M11 are m1×n1, of M12 are m1×(n − n1), of M21 are
(m − m1)×n1, M22 are (m − m1)×(n − n1), while L1 and L2 are vectors of dimensions m1×n1

and (m − m1)×1 respectively. The desired trajectory in the state space is denoted by
TTT tptptx ))(),(()( 000 = .

Now, the control task is specified in the following form as a task of practical stability
of the robot around the nominal trajectory x0(t): The control of robot has to ensure that
∀ x(0)εXI and ∀ dεD  imply x(t)εXt(t), where XI and Xt(t) are the finite regions in the state
space around the prescribed nominal trajectory x0(t) and T = (t,tε(0,t1)), t1 is the
predefined time period. It is assumed that x0(0)εXI, x0(t)εXt(t), ∀ tεT, Xt(0) ⊂  XI.

This formulation of the control task can be interpreted as presented in [8,9]. Due to
(3.1), and as shown in [8,9], a fulfilment of the specified control task also guarantees
tracking of the desired force trajectories F0(t), i.e. it guarantees that F(0)εFI and ∀ dεD
imply FεFt(t), ∀ tεT, where FI and Ft(t) are regions in the m × 1 space around the nominal
trajectory F0(t). Note that regions FI and Ft(t) must correspond to the regions XI and
Xt(t), respectively. In order to simplify stability analysis let us consider specific forms of
the finite regions XI and Xt(t): }||)0(:||)0({ IXxx <∆=IX , )}exp(||)(:||)({)( tXtxtxt t α−<∆=tX ,

∀ tεT, }||)0(:||)0({ IFFF <∆=IF  )}exp(||)(:||)({)( tFtFtFt t β−<∆=tF , ∀ tεT, where

0>> It XX , 0>> It FF , α > 0, β > 0. Here tX , IX , tF , IF , α, β, denote real-valued
positive numbers, ||⋅|| denotes Euclidean norm of the corresponding vector, and x∆  is

12 ×n  vector of the state deviation around the desired nominal trajectory ( )tx0 , i.e.
TTT Tptptxtxtx ))(),(()()()( 0 ∆∆=−=∆  while ∆F(t) is n×1 vector of the force deviation

around the desired force trajectory.

4. CONTROL LAW

We shall consider two control laws:
First, dynamic position/force control law (see Fig. 1) is considered [4,5]:

),,,(* FpppU c=τ (4.1)
where

)(),,,( **** FpJFpppU T −+Λ= ρ (4.2)

where J*, Λ*, ρ* denote matrices and vector corresponding to J, Λ, ρ from the model (2.1)
but with the assumed parameters values d = d0εD. This means that we assume that the
structure of the model is known, while the parameters values are not accurately known.

cp  in (4.1) stands for
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where
)(),,,( *

1
01*

11
011*

12
0101* LpMFMFpppW −−−= −

dttFtFKF F ∫ −=∆ ))()(( 01111

11
2

11
1

11
1 ),( pKpKppP ∆+∆=∆∆

where *
11M , *

11M , *
11M  denote matrices and vector corresponding to M11, M12 and L1 from

the model (3.1) but with the assumed parameters values d0. F1 is m1×1 sub-vector of force
vector F for which the nominal trajectories are specified in advance, F = (F1T,F2T)T, K1F is
m1×m1 matrix of force feedback gains, 1

1K  and 1
2K  denote n1×n1 matrices of position and

velocity feed-back gains (for the sake of simplicity we shall assume that the both matrices
are diagonal), respectively, ∆p1 = p1(t)−p01(t) is n1×1 vector. This control law takes into
account complete dynamic models of the robot and environment as well as interaction
among directions in which position is controlled and directions in which force is
controlled. This means that both position and force feedback loops are used in all
directions. The control law may be considered in a more general form, i.e. P1 and ∆F1 
can be defined in a more general form.

Fig.1. Dynamic position/force Fig. 2. Decentralised (non=dynamic)
control law position/force control law

The second control law to be considered (see Fig.2), so-called decentralised
position/force control law, can be derived from the first one by taking 0*

11 =M , 0*
1 =L ,

ρ* = 0, )(
**

12
iimdiagM = , )(

** iidiag Λ=Λ , where 
*iim  and 

*iiΛ  are constants. This control law
ignores practically all dynamic effects. It actually represents the so-called classical hybrid
control scheme [10], although selectivity matrix explicitly is not presented. Assuming
that 1

1K  and 1
2K  as well as FK1  are diagonal matrices, this control law stabilises each

Cartesian d.o.f. independently from the others (i.e. the dynamic coupling between d.o.f. is
ignored both for position and for force controlled directions).

5. QUALITATIVE ANALYSIS OF DYNAMIC EFFECT

In this section a brief qualitative analysis of the effects of the different dynamic
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factors will be presented. By comparing the two proposed control laws, we may analyse
what can be the influences of the different dynamic effects which are ignored in the
second control law.

Position control part: The effects of the robot dynamics upon the position controlled
part are essentially the same as in the free motion control. This means that ignoring of the
Coriolis forces ρ* = 0, non-diagonal elements in the matrix of inertia ))((

** iidiag Λ=Λ , may
lead to errors in a tracking of the (fast) desired trajectories, but not in errors in final
positioning of the robot [3]. Gravity moments have to be compensated in order to ensure
accurate positioning of the robot. Influence of the force controlled directions upon the
position control part via non-diagonal elements in the matrix Λ (2.1) may lead to errors in
the trajectory tracking if excessive accelerations (forces) appear and if these non-diagonal
elements are large. Effects of the interaction forces in the position controlled directions
can be easily compensated by direct force feedback (if delay in feedback loop is
acceptable and Jacobean J is accurately calculated) as presented in Fig. 2.

Force control part: The main problems of the stability of the force controlled
directions (and of the over-all system) are deeply related to the characteristics (i.e. of the
character of the vector L in the model (2.2)) of the environment dynamics as shown in [4-
6]. However, once the environment dynamics fulfils stability requirements, the influence
of the dynamic effects upon the force controlled directions have also to be analysed.
Ignoring of the dynamic effects of the position controlled directions upon the force
controlled directions )0( *

11 =M , the dynamic coupling between different directions
))((

** iidiag Λ=Λ , as well as ignoring of the interactions among the force controlling
directions themselves ))((

**
12

iimdiagM = , may lead to high errors in the force controlled
directions since these force control loops may be more sensitive to perturbations than the
position controlled directions. Obviously, these influences depend on the robot structure
(matrix of inertia Λ in the model (2.1)), characteristics of the environment (matrices of
the moments of inertia of the environment M11 and M12  in the model (3.2)), and the
imposed control task (characteristics of the desired force trajectories, desired accuracy,
i.e. the defined regions of the practical stability).

6. PRACTICAL STABILITY ANALYSIS AS A PROCEDURE TO
EXPLORE EFFECTS OF DYNAMICS

In this section we shall establish a procedure for analysis of practical stability of the
robots interacting with the dynamic environment, which can be used to explore which
dynamic effects can be ignored and which have to be taken into account in order to fulfil
the stated control task. The closed loop model of the robotic system (model of deviation
around the desired nominal trajectory x0(t) in the state space is obtained by combining the
robot model in the state space (2.3) and the corresponding control law (4.1):

FdxGdxxfx ),(),,(
*0 ∆∆+∆∆=∆ (6.1)

where ),,(
*0 dxxf ∆∆  is 2n×1 vector and ∆G(∆x,d) is 2n×n  matrix. In the previous

papers [4-6] it has been shown that application of the control law (4.1) ensures desired
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tracking of the prescribed nominal force trajectory (i.e. desired transient behaviour of the
force F(t), if an ideal model of the system used in the control law is assumed. Since the
model of the system (robot + environment) in (4.1) is not ideal (due to parameters
uncertainties), the desired force transient process cannot be perfectly achieved. However,
it can be shown that by appropriate selection of the force feedback gains, and under
assumption of the limited deviations of the assumed model parameters from the actual
values, the control law (4.1) can guarantee that the force transient process satisfies the
conditions of the practical stability, i.e.

)exp()( tFtF t β−<∆ (6.2)

Starting from the assumption that the force transient process satisfies (6.2), it has to
be examined whether the control law (4.1) can ensure the practical stability of the over-
all system. This means that the conditions, under which the proposed control law fulfils
the specified control task, i.e. the conditions of the practical stability of the robotic
system have to be derived. It can be shown [11, 12]. that the system is practically stable
with respect to (XI,Xt,T) as defined above, if there exist a real valued continuously
differentiable function ν(t,x) and a real valued function of time Ψ(t) which is integrable
over the time interval T such that

)(),( txtv Ψ≤ , )(~ tXx tε∀ , Ttε∀ (6.3)

)0()(')'(
0

It X
M

X
m

t
vtvdtt ∂∂ −<Ψ∫ , Ttε∀ (6.4)

∂X(t) denotes the boundary of the corresponding region and )exp()()(~ tXttX It α−−= tX . In
(6.3) v  denotes the time derivative of the function ν(t,x) along the solution of the closed-
loop system. νm and νM denote minimum and maximum values of ν at the corresponding
boundaries of the regions, respectively. Note that the conditions (6.3) and (6.4) are
sufficient but not necessary conditions for the practical stability of the system. The proof
of the above stated method for the testing of practical stability is provided in previous
papers [11, 12].

Following the aggregation/decomposition approach to system stability analysis we
may decompose the system (6.1) into a set of n ‘subsystems’: the position controlled part
subsystems i = 1,...,n1 and the force controlled part subsystems (i = n1+1,...,n):

FdxGdFFxxfxAx ii
i

ii
i ),(),,,,( 00*

∆∆+∆∆∆+∆=∆ ,  ni ...,,1= (6.5)

where Tiiiii tptptxtxtx ))(),(()()()( 0 ∆∆=−=∆ , i = 1,...,n and ∆fi and ∆Gi are vectors
and matrices of the appropriate dimensions, while the 2×2 matrices Aii are given by:









= iiiiiiiiii KQKQ

A 1
211

1
111

10
, 1...,,1 ni = ,









= ViiiiPiiiii LQLQ
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122122
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, nni ...,,11 += ,
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where iiQ11  and iiQ22  diagonal (constant) elements of the n1× n1 and n2× n2 matrices
representing estimates of *

1
*1

111 ΛΛ= −− JJQ T  and *
2

*1
222 ΛΛ= −− JJQ T  (where 1

1
−Λ , 1

1
−Λ , *

1Λ ,
*
2Λ  are appropriate submatrices of the matrices Λ−1 and Λ*. PiL1  and ViL1  represent

elements of the vectors PL1  and VL1  estimating stability factors in the dynamic model of
the environment, i.e RVP LpLpLLMLM 1

2
1

2
1

0
1

10
12

*
1

1*
12 +∆+∆=− −− .

Let us consider the practical stability of the decoupled subsystems i
ii

i xAx ∆=∆ . We
may assume that the regions of practical stability can be presented in the form

)()1( ... nIII XXX ××=  and )()1( ... nttt XXX ××=  where }||)0(:||)0({ )()( iIiii Xxx <∆=IX ,
)}exp(||)(:||)({ )()( tXtxtx i

itiii α−<∆=tX , Ttε∀ , where 0)()( >> iIit XX , 0>iα . Let us select

the functions νi(t,x) (i = 1,...,n) in the form: 21)(),( i
i

iT
i xHxxtv ∆∆= , (i = 1,...,n) where

iH  are the positive definite matrices of the appropriate dimensions. The derivative of the
functions νi along the solutions of the decoupled subsystems can be written as:

||||)(),( ' i
iii

i
ii

T
ii xvxAvgradxtv ∆−≤−≤∆= γγ (6.6)

where γi = −min|λ(Aii)|, λ(Aii) denotes eigenvalues of the corresponding matrix,
)('

imii Hλγγ = . The conditions (6.6) are valid under assumption that the matrices Hi are
selected to satisfy iii

T
iiiii HHAAH γ2−≤+ . The coupling members in the subsystems (6.5)

can be estimated in the following form (sums indices are omitted for the sake of
simplicity):

∑ ∑∑∑∑ ∆+∆+++

<∆∆∆

|||||)(||)(||)(|

),,,,()(
54013012011
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(6.7)
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6
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+∆<∆∆

∑
∑

ξ

ξ
(6.8)

where k
ijξ , k = 1,2,...,nk (nk denotes appropriate number corresponding to k) are the real

numbers (note that these numbers may be also negative). Inequalities (6.7), (6.8) have to
be valid for ∀ xεXt(t), ∀ tεT, and ∀ dεD. The practical stability conditions of the over-all
system can be established by considering the derivative of the function νi along the
solutions of the coupled subsystems (6.5) (aggregation principle). Based on (6.6) - (6.8),
candidates for the functions ψi(t) for each subsystem i can be obtained:

2,1,|)exp(||)exp(||)(|

|)(||)(|)exp(

)()exp()(

075012

013011

64)(

=−++−++

+++−

++−−=Ψ
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itFFdttFtF

txtxt

XtXt

t
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t
jijjij

jijjiji

t
ijiji

iI
ii

βξβξξ

ξξα

ξξαγ

(6.9)

By substituting (6.9) into (6.4) we obtain the practical stability test for the robot
interacting with the dynamic environment when the control law (4.1) is applied. If we
ignore all dynamic compensation elements in the control law, we obtain stability test for



Is Dynamic Control Needed for Robots Interacting With Dynamic Environment 533

the decentralised control law (fig. 2).

6. CONCLUSION

The obtained test may be used to analyse which dynamic elements may be ignored
but still to ensure fulfilment of the desired control task. This means, that this test may
serve as a procedure for identification of the ‘minimal’ dynamic control law which may
practically stabilise the robot interacting with the dynamic environment.

Note that the practical stability analysis is the only appropriate way to study these
effects taking into account uncertainties in the dynamic models of robots and, specially,
of the environment.

Such procedure is of high importance in the synthesis of the appropriate control laws
for the robots in contact to the dynamic environment, since, on one hand, ignoring of the
dynamics (both of the robot and of the environment) may lead to inappropriate
performance (and even instability) of the robot, while, on the other hand, an introduction
of all dynamic factors in the control law may lead to a high complexity and an
insufficient robustness of the control system, due to high uncertainties in modelling of the
environment. Therefore, for each specific task (or, classes of tasks) and for each specific
robot structure and environment, it should be carefully studyed which of the dynamic
factors have to be `directly` compensated for by the control law. Although it is obvious
that the role of the system dynamics in the constrained motion control tasks is more
important than for the free motion control tasks, it is recommendable to constrain the
application of the relatively complex dynamic control laws to the tasks where they are
needed and bringing improvements in the system performance.

The derived practical stability test has to be further elaborated (e.g. better estimates of
the soupling elements among the subsystems have to be elaborated, etc.), but it certainly
exhibits certain advantage (less conservatism) over the previously derived test [8,9],
specially for the decentralised control laws (Fig. 2).
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DA LI JE DINAMIČKO UPRAVLJANJE POTREBNO
ZA ROBOTE KOJI SU U INTERAKCIJI

SA DINAMIČKIM OKRUŽENJEM?
Miomir Vukobratović, Dragan Stokić

Rad se odnosi na ulogu dinamike u upravljanju robotima koji su u interakciji sa dinamičkim
okruženjem. Cilj rada je da se definiše da li je potrebno uključiti kompenzaciju različitih
dinamičkih faktora u upravljački zakon pozicija / sila. Počevši od potpunog dinamičkog modela
robota i okruženja, analizirani su uticaji različitih dinamičkih faktora na upravljanje položajem i
silom robota. Upoređen je upravljački zakon zasnovan na potpunom inverznom dinamičkom
modelu i decentralizovani upravljački zakon. Dinamički efekti su najpre kvalitativno analizirani, a
zatim je prikazan pristup za ispitivanje ovih efekata zasnovan na analizi praktične stabilnosti
manipulacionih robota u upravljačkim zadacima ograničenog kretanja. Priloženi test stabilnosti
može se koristiti za proveru svake pojedinačne strukture robota i okruženja i različitih upravljačkih
zadataka, čiji se dinamički efekti moraju uzeti u obzir.


