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Abstract. In this paper the linear theory of heat conduction in a material interface is
considered. Under the assumption introduced by I-Shih Liu, and using the entropy
production inequality of the type of Green & Laws', it has been shown how Fourrier
Law of heat conduction in a material interface can be obtained.

1. INTRODUCTION

The  problem of heat conduction in a material interface has been considered in the
continuum mechanics with the classical assumption that the temperature gradient is the
driving force of heat conduction [1], [2], [3]. Abandoning this assumption, in [4], the
problem of heat conduction in a fluid has been considered, starting with the assumption
that among the independent constitutive variables, instead of temperature, the internal
energy appears. Then, it has been shown that in this, more general case, Fourier's law of
heat conduction in the fluid under consideration can be derived. In this paper we consider
the linear theory of heat conduction in a material interface. The assumption of I-Shih Liu
that the temperature of the interface is not an independent constitutive variable represents
the basis of our investigation. The thermodynamic analysis has been carried out upon the
entropy production inequality, which has the form of Green & Law's inequality for a
three dimensional body.

2. BULK MATERIAL

2.1 The balance equations of the bulk material

Let us consider a three dimensional continuum of the volume v(t), which is divided
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into two parts by the material interface s(t). The interface s(t)  is the common boundary of
both parts, so that v(t) = v+(t) ∪  s(t) ∪  v-(t)  holds. The bulk material covers the parts of
the continuum under consideration having the volume v±(t)  and which are on both sides
of the interface s(t) .

The balance equations of the mass, momentum, moment of momentum and energy of
the bulk material can be written in the well known from [1]:

0, =+ k
kξρρ ; (1)

0, =−− iik
k

i bt ρξρ ; (2)

0=jk
ijk tε ; (3)

0,, =−+− hqte k
kki

ik ρξρ (4)

where iξ  is the bulk material particle velocity, ρ -the mass density, tik-the stress tensor, bi

- the body force; εijk is alternator tensor, e - the specific internal energy, qk- the heat flux
vector, h -the heat supply; "," denotes the covariant derivative, while "." denotes the
material time derivative.

2.2 The constitutive equations of the bulk material

It has been supposed that the bulk material is a heat conducting fluid which has the
constitutive equation of the form [3]

);( eρηη = , (5)

iii ekkq ,2,1 += ρ , (6)

ijij pt δ−= , (7)

where η is the specific entropy, and where the pressure p and the coefficients k1 and k2

are the functions of density ρ and internal energy e.

3. INTERFACE

3.1 The geometry and kinematics of the interface

The interface s(t) under consideration can be defined with respect to the Cartesian
coordinates xi in the following analytical form

);( tuxx ii α= ,   rankdet 2=










∂
∂

αu
xi

,   )3,2,1( =i ,   )2,1( =α , (8)

where t is the time and where uα are coordinates of a two-dimensional space containing
the interface s(t). The equation (8) represents one of the possible parametrisations of the
interface s(t). From all of these, we choose the normal parametrisation for which
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i

v
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vU
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x =
∂
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α

, (9)

holds. Here 
v

U  is the normal speed of the interface and vi is the outward normal unit

vector of s(t). Thus,
1=iivv ,     0, =ii vx α . (10)

The first fundamental metric tensor of the interface is
ii xxg βααβ ,,≡ . (11)

Denoting by bαβ the tensor of the second metric form of the interface, its mean
curvature can be expressed in the form

α
αbKM 2

1≡ , (12)

Gaussian curvature of the interface is given by

)det( α
βbKG ≡ (13)

It has been assumed that the interface is impermeable for the bulk material, i.e.,
−+ == vvv U ξξ , (14)

where +
vξ  )( −

vξ  denotes the normal component of the velocity of the bulk material
particle which, in a given moment, has the position on the positive (negative) side of the
interface.

3.2 The balance equations of the interface

The balance equations of the mass, momentum, moment of momentum and energy of
the interface can be written as in [1]:

0)2( , =−+ MvKUV α
αγγ ; (15)

0|][|, =−−− i
kikkk vtBSx γγ α

α ; (16)

0, =α
αε kj

ijk Sx ; (17)

0|])([||][|,, =−−+−−+ i
iiki

k
k

k
k vxtvqHxSQ ξγεγ α
αα

α , (18)

where γ is the surface mass density, Skα- the surface stress, Bi- the body force of the
material surface, ε - the specific internal surface energy, Qα - the surface heat flux vector,
and H - the heat surface supply; ix  is the velocity of the particle of the interface which
can be expressed in the form

ii

v

i xVvUx α
α

,+= , (19)
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Here, Vα is the tangential velocity of the particle of the interface. In the previous
balance equations of the material interface, the jump of the quantity ψ of the bulk
material on the interface has been denoted by [|ψ|] = ψ+ - ψ -.

If the stress decomposition is performed in the following way
kkk vSxSS α

β
αβα += , , (20)

it can be shown that (17) is equivalent to
0=αS ,    βααβ SS = . (21)

3.3 Entropy production inequality of the Green & Laws' type for the material
      interface

For thermodynamic considerations, the entropy production inequality of the Green &
Law type has been adopted for the material interface [5]

0|])([|1,
, ≥−+
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α , (22)

where Φ(>0) is the specific entropy of the interface, N is the constitutive quantity of the
interface to be determined, and where ϕ(>0) is the constitutive quantity of the bulk
material.

3.4 Thermodynamic properties of the material interface

The subject of the present study is a fluid heat conducting interface the
thermodynamic properties of which are characterized by the following set of independent
constitutive variables

};;;;;;{ ,,,,
iii

o vvxc αααα εεγγ= , (23)

The constitutive equations for symmetric stress tensor Sαβ, heat flux vector Qα,
specific entropy N, and constitutive quantity Φ now take the form

)}(;;;{ ,
oo cNQS Φ= αβαω . (24)

The form of each of these function depend on universal physical principles, such as
the principle of material indifference and the entropy principle, inposed on the material
interface.

4. RESTRICTIONS OF CONSTITUTIVE FUNCTIONS OF THE MATERIAL INTERFACE

The principle of the material indifference imposes the condition that the constitutive
functions characterizing the physical properties of the material interface connot depend
upon the observer.

By using the principle of material indifference in the space and the surface [1], it can
be shown that the constitutive quantities of the interface Sαβ, Qα, N and Φ must be
functions of the form
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)}(;;;{ , cNQS Φ= αβαω , (25)
where

};;;;;{ ,,, αββααα εεγγ bgc = . (26)

Further restrictions to the form of the constitutive functions are imposed by the
entropy production inequality of the Green & Laws' type which, for the material interface
has the form (22).

By using (15), (25) and (26) in (22) we obtain the following entropy inequality,
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Obviously this inequality is linear with respect to the following set of quantities:
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This means their corresponding coefficients in that inequality must vanish,  i.e.,
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In this way, the residual inequality is obtained in the following form
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We proceed analyzing each of conditions (28)-(36) and inequality (37). It is easy to
see that, from (25), (26), (29), (30) and (31) we conclude that the specific entropy is the
function of the form

);;( αβεγ gNN = . (38)
Next, using (28) and (38), we obtain

);;( αβεγ gΦ=Φ . (39)
Substituting (28) in (35) we get
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γ
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g
NNKbS M ∂

∂Φ−
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By the further analyses of the entropy inequality, from (12) and (36), we obtain

γ
γαβ
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∂
∂Φ= NKbS M

22 . (41)

Then, from (40) and (41) we simply conclude
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By using (42) and (43) in (38) and (39), we have
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),;(

εγ
εγ

Φ=Φ
= NN

(44)
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Obviousely, from (36), we have
αβαβ σ gS o−= . (45)

Here

γ
γσ

∂
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o
2 , (46)

i.e.
),( εγσσ oo = . (47)

Further, from (44)1 and (28), we get

γ
γ

ε dNddN
∂
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Φ
= 1 . (48)

We compare it with Gibb's equation, which reads
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where sT  is the absolute temperature of the interface, and see that the constitutive
quantity Φ  can be identified with the absolute temperature, i.e.,

sT=Φ . (50)

Then the residual entropy inequality may be written as
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Assuming that the absolute temperatures of the bulk material and the interface are
equal, e.i. ϕ = T = Ts, the inequality (51) becomes
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For a further usage of the inequality (52), the particle velocity of the bulk material is
expressed in the way as it has been done for the interface particle (Eq.19). Thus,

i
i

v

i xv α
α

τ
ξξξ ,+= ,

where 
τ

αξ  is the tangential component of the velocity of the bulk material particle which,

at a given moment, has the position on the interface, and 
v
ξ  is the normal component of

iξ .
It can easily be shown that the following holds:
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Taking into account (14) in (53), it follows

α
αξ ,iii xWx =− , (54)

where
α

τ

αα ξ vW −≡ . (55)

By using (54) in (52), we obtain
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where k
kii vtt ≡ .

Since the quantities W +α and W −α  can be chosen arbitrarily at the point on the
interface at the initial moment, it follows that inequality (57) is linear in W +α  and W −α

wherefrom we obtain
0, =+

αi
i xt    and   0, =+

αi
i xt . (57)

Inequality (56) then becomes
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Generally, the constitutive equation for heat flux vector of the interface Qα is of the
form

)()( ,2,1,2,1 ββ
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αβα εγεγ LLbKKgQ +++= , (59)

where the coefficient K1, K2, L1, and L2  are functions of

βα
αβ

βα
αβ

βα
αβ

α
α

α
α

α
α

εγεεγγ

εγεεγγ

εγ

,,,,,,

,
,

,
,

,
,

,,

,,
,,,

,,

bbb

KK GM

In a case of linear heat conducting material interface K1, K2, L1, and L2 are function of

GM KK ,,,εγ .

Substituting (59) in (58), the residual inequality gets the form
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The left-hand side of the inequality (60) is denoted by σ for further considerations.
Notice that the σ is particularly a function of the following set of the independent
variables

};{}{ ,, αα εγ=AX . (61)
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5. EQUILIBRIUM PROCESSES

Equilibrium process E of the material interface can be defined as a time independent
and uniform thermodynamic process. Then the following holds

0: ,, == αα εγE .

In equilibrium σ has its minimum, i.e., σ |E = 0, and the necessary and sufficient
conditions for it are

0=
∂
∂

EAX
σ ; (62)

EBA XX ∂∂
∂ σ2

 is positive semi-definite. (63)

We are investigating the case when the coeficient K1, K2, L1, and L2 do not depend on
KM and KG. Than, L1 = L2 = 0 since (60) has to hold for arbitrary bαβ.

By using (60) it can easily be shown that the conditions (62) are identically satisfied,
while the matrix (63) takes the form

I
II
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+
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where I is (3 × 3) unit matrix and
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In its expanded form, matrix (64) reads
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From the condition that matrix (66) is positive semidefinite, it follows that

011 ≤Ka ; 022 ≤Ka , (67)

0)( 2
1221 ≥−− KaKa , (68)

must hold. Then, from (68) it immediately follows that
1221 KaKa = (69)
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6. FOURIER'S LAW OF HEAT CONDUCTION

By using the results from the previous chapter, we are able to write the explicit form
of the heat flux vector (59). Taking into account (69), it can easily be demonstrated that

)( ,2,1
2

2
,2,1 αααα εγεγ aa

a
KKK +=+ . (70)

On the other hand, taking into consideration (44)2 and (50), we conclude

);( εγss TT = , (71)
so that, by using (65), we can write

βββ εγ ,2,1 aa
u
Ts +=

∂
∂ . (72)

Then, from (70) and (72), it follows that

βββ κεγ ,,2,1 sTKK −=+ , (73)
where

1

2

K
K

−≡κ . (74)

Thereby, regarding (67)2, the following must hold

0≥κ . (75)

Finally, from (59) and (73), the law of heat conduction is obtained in the form

β
αβα κ ,sTaQ −= . (76)

7. CONCLUSION

The thermodynamic analyses carried out has been based upon the entropy production
inequality of the Green and Laws' form. It has been shown that the constitutive quantity
Φ can be identified with the absolute temperature of the interface.

The basic result of the present paper given by expression (76) represents Fourier's law
of heat conduction in a case which appears offen in practice. From this result it can be
seen that the driving force for heat conduction in a material interface is only the
temperature gradient although we started tracing the idea of I-Shih Liu that the heat flux
vector of a material interface is a linear combination of the gradients of temperature and
internal energy. The more general case when K1, K2, L1, and L2 depend on bαβ is very
complicated and will be the object of our further investigation.
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O GRIN - LOOVOM PRINCIPU ENTROPIJE ZA DODIRNU
POVRŠINU MATERIJALA

Z. Golubović,  J. Jarić

U ovom radu razmatra se linearna teorija provođenja toplote na dodirnoj površini materijala.
Pod pretpostavkom koju je uveo I-Shih Liu i primenom nejednakosti (stvaranja) entropije tipa Grin
- Loa, pokazano je kako se može dobiti Furijeov zakon provođenja toplote za dodirnu površinu
materijala.


