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THE INFLUENCE OF THE TRANSVERSAL DIMENSIONS ON
THE PROPAGATION VELOCITY OF THE LONGITUDINAL
WAVE-LENGTHS IN AN AXISSYMETRICAL BODY

UDC: 681.11.032.11; 624.044; 539.3

Katica (Stevanovi¢) Hedrih, Predrag Kozi¢, Ratko Pavlovi¢

Faculty of Mechanical Engineering, University of Ni§, YU

Abstract. The velocity of the longitudinal waves in a cylindrical hollow bar is obtained
as the velocity of infinite wave-length of a function of three parameters: Poisson's
coefficient, relation of external and internal radius and wave-length (ratio). This
function is given for the lowest frequency within the field of the geometrical parameters
value which are physically important for applications. Geometrical interpretations of
the numerical experiment of the influence of the transversal dimensions on the
propagation velocity of the longitudinal wave-length in a cylindrical hollow bar is
presented.

When we provoke (cause) a perturbation of equilibrium state (natural - eigen state) of
elastic body which is free of external forces actions, the motion-flicker (twinkle) of the
body particles must be arised. That motion-flicker (twinkle) is transferred through the
body as a wave processes. In every particle (points) of the elastic medium, the same state
of perturbation must be arised, but with different phase delay. The motion-flicker
(twinkle) of the body particles can be provoked in the case when elastic body is in the
natural - eigen unstressed state as well as when the body is in the prestressed state. Elastic
bodies with natural rigidity on the strain can twinkle in both ways. We mark with # the
vector of displacements of the elastic body point. If we introduce the preposition that we
observe only small deformations of elastic body and eliminate the translation which
corresponds to the rigid body motion, the stationary part of the derivative in time of the
displacement vector can be neglected, and for partial equation of the wave motion of the
deformable elastic body we can adopt Lame's partial differential vector equation in the
form:
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VAii + (A +V) grad divii + F}, = pu €))
If we neglect the volume (mass) force I:}} , and take in consideration that are:
v=G= E , A= L , (2)
2(1+ ) I+ m)(1=2p)

grad divii = rot rotii + 0%
and that strain volume is:
_10(u,) ) 1 Oug + Ou,

= divii 3)
r o or rogp 0z
the Lame equation (1) obtain following form:
(A +2v)grad divu —Vv rot rotu = pﬁ 4)

This problem will be solved using polar-cylindrical coordinate s,r¢,z, and with
u,,uy and u_ are note components of the vector displacement u . After introducing
expressions for rotrotu and graddivi in the last equation (4) we can rewrite this

equation in the scalar form by tree equations:
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where w,, wy and w, are components of the vector rotation.

We solve the equations (5) by introducing propositions that uy=0, and that
displacements u, and u. do not depend on the angle ¢. In that case we have an axially
symmetric problem and then the harmonic wave, inside a hollow cylinder of the inner
radius R, and the external radius R,, moves on the z-axis. By using the introduced
assumptions we can determine components of the rotation vector:

Ou
w :0,0)‘1,,:l Yr 0 w, =0, (6)
0z 0¢

and stress tensor components:
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By including these assumptions in the equation (5) they become two differential
equations, because the second equation is identically equal to zero and after inclusion &,
W, Wy, @. they are:

u, 10u, u,  0%u. u, 0w, [ 9%u,
(A+2v) -+ v - =p
ot rar y* 010z 9> 0oz at?

0%u, 10u, 0%u.H v[Pu, ou, 0%u, 0%u, 0%u.

(A+2v) +— + — -——=V - =p
@z r 0z 9z° rgdz  0r z20r  9r? a2
As the problem is symmetric we introduce two functions f{r,y,f) and yfr.zt). The

displacement components, the rotation angle in circular direction and volume strain
expressed by them are:

®)

L 2wy 'y 1oy
"9 ez’ Y or @t ror’

)

10
Wy =55(A4/), gy =0f (r,2,0) (10)

By replacing the relations (9) and (10) into differential equations (8) they become:

0 o - v o’ 0.

v _ - :(), 11

arljf /\+2Vf§+}\+2v6raz§m’u ng (an
OBS P B_ v 100 OBS o .M
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ot Thew E v o Ba vy Y (12)

One of the particular solutions of the system (11)-(12) is when the following
equations are satisfied:
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1 - 1 .
A -—F=0, Ap-—@i=0 (13)
G G
in which introduced following notations are:
+ —
g=Ar_ Elow oa v, E (14)

> 2

P pl+m-2p) P 2p(1+p)

As the harmonic wave lays (propagates) along the z-axis we assume that the solution
of the system (13) is:

[z, = B D (r,z,0) = W(r)e D (15)

By replacing the assumed solutions in the differential equations (13) they become two
simple differential equations:
d*®(r) L 1do@)

rodr

— +Vid(r) =0,
r

d’W(r) , 1d¥(r)
rodr

" +ViW(r) =0, (16)
r

where are:
2 2
2 -2 _ 2 2 -2 _ 2 2 _W 2 _W
A )
The solutions of equations (16) are given in the expressions:

(18)
W(r)=AJy(v,r)+ BN ((v,yr),v, >0

where Jo(V,r), Jo(V,r), NoVir), N yV,r), are Bassel's special functions.

The unknown constants A, B, C and D we determine from the boundary conditions
that the stresses on the internal and external boundary surfaces of the cylinder are equal

to zero i.e.:
R %V—au’ AP U O % =0,
r=
l U =R,

or Oor r Oz

_R:%’Bur*—% =0’
=N gooz or ok,

0
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If, under the boundary conditions (19), we replace the displacement components u,
and u, given in expressions (9), and as the functions f{r,z,1), Y(r,z,f), P(r) and YP(r),are
determined by expressions (15) and (18) as well as by equations (13) and (16), we
obtain, for the determination of unknown constants A, B, C and D, a system of four
homogenous linear equations. By making the system determinant equal to zero we obtain
the following frequency equation:

. Ak} . Ak} o -
‘]O(VlRl)_? JoWiRy) NO(VIRI)_?NO(VlRl) iJo(V,Ry) iNg(W,R))
. - 1HG JH, 1HG :
iJo(ViRy) iNo(VR) 5%’%_2%0(‘/2&) EB”i —2:N((V,Ry) (20)
=0
" Ak} ] Ak} o -
Jo(Vle)_? JoWiRy) No(Vle)_?No(Vle) iJo(VRy) iNg(V,R;)
. - 15G JH, 15 :
iV iR,) iNg(WiRy) E%%_QEJO(WRZ) E%%_z%o(vzlez)

The discussion of this equation is very complicated. Therefore we shall only
determine the functional dependence of the phase velocity of spreading of harmonic
waves inside the cylinder ¢ = w/a as a function of relation between the interior and
exterior radius and the wave length A, = 277, and for the lowest own frequency.
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Fig. 2
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Fig. 2 shows the relation — as the function of i and —= for the material
o 1 1
C1531 of the elasticity module E =2,97300*kN/cm’ of the mass density
p=7850 kg/m’ and Poisson modules 1= 0,29.
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UTICAJ POPRECNIH DIMENZIJA NA BRZINU PROSTIRANJA
LONGITUDINALNIH TALASA U OSNO-SIMETRICNOM
ELASTICNOM TELU

Katica (Stevanovi¢) Hedrih, Predrag Kozi¢, Ratko Pavlovi¢

Brzina longitudinalnih talasa u cilindricnom Supljem Stapu odredena je kao brzina beskonacnih
talasa u funkciji tri promenljive: Poisson-ovog koeficijenta, odnosa unutrasnjeg i spoljasnjeg
poluprecnika prema talasnoj duzini. Ova funkcija je sracunata za najnizu frekvenciju u oblasti
argumenata koji imaju fizicki znacaj za primenu. Data je geometrijska interpretacija numerickog
eksperimenta uticaja poprecnih dimenzija na prostiranje brzine longitudinalnih talasa u
cilindricnom Supljem Stapu.



