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Abstract. The stability problem of the equilibrium position for mechanical system with
one degree of freedom is considered in the paper. On the basis of the general theorems
from [1, 2] the sufficient condition of asymptotic stability in the various assumptions
with respect to viscosity and elasticity are obtained. The comparison of obtained results
and the results, obtained by means of the other methodes is carried out.

1. INTRODUCTION
Consider a mechanical system with one degree of freedom
¥+k(t,x,x)|x|" x+f(x)=0, (a=0) (1.1)
where k(¢,x,y) and f{x) are the functions defined and continuous for all 0R" and (x,y)CR?,
and such that
k(t,x, ) 20(0: OR™, O(x, y) OR?), xf(x) >0(Clx  0), f(0) =0 (1.2)

The equations of the form (1.1) is the subject of a number scientific papers. Here we
present the most famous results. Primary the simplest equation of the form (1.1)

F+k(f)%+hx=0

have been considered, were 4>0, k(£)=0. Under the condition 0<k;<k(f)<k,, were kj, k, are
constants the equilibrium position is globally asymptotically stable [3]. If the damping
coefficient k(z) is not bounded above, then the rest point x=x=0 is not necessarily

asymptotically stable. For instance the equation ¥+ (2+e')x+x=0 has the solution
x=a(1+e") that does not tend to 0 as t— +oo [4].
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The equation of the same form has been studied in [5]. The following conditions for
the global asymptotic stability of the equilibrium point is obtained

T
%J’k(l’)dr <k =const, h>0, k(t)=2€>0
0

Moreover it is pointed that this result is true for a nonlinear equation of the form
¥ +k(t,x,x)x+ f(x) =0, (1.3)

were If(z)dz — +00 @S x| - +eo, k(t,x,%)2W(x,x)20 (W(x,x)>0(x#0)). The
0
growth condition for the coefficient of viscosity is as follows
17 .
ij(t,x(t),y(t))dt <B O(x(@), y(0)):R" ~{|x|sH,|yl<H} (14
0

for some B and all 7=0.
The assumption of boundedness for all T of 1,/T2J'0Tk(t) dt implies that &(z) grows no

more than linearly in time. In paticular if k(f)<K+M¢, this growth condition (1.4) is
satisfied. Alternatively, it is shown that the condition k()<K+M:**¢ (€>0) does not assure
the globally asymptotic stability.

In [6] the uniform asymptotic stability of x=x=0 is shown in the case of integrably

continuous function k=k(¢) and when
t+T

lim inf [k(r)dT>0. (1.5)

t -+, T - 400
The investigation in detail for nonlinear equation of the form (1.1) when the damping
coefficient (¢, x,x) is unbounded or became "too small" is presented in [7].
It is shown that under the conditions

0<ly(x)<k(t,x,x) <k, (Oks(x,x), ky(¢)>0, k3(x,x)=0,

[ku(x)dx =m(v)>0 (Ov>0), [ky'(1)dT =co, (1.6)
-y 0
the equilibrium position is globally asymptotically stable, here k,(¢) is the nondecreasing
function.

The result is the same one when

0<Fky(t) <k(t,x,x) < ky(x, %), Ikl(r) dT =, .7
0
From the other hand if k=k(£)=k,(t)>0, k() is nonincreasing and
J’k{l(r) dT < +oo
fo

then the equilibrium point x=x=0 may be nonattractive for some solutions from their
neighbourhood.

We note that the results obtained in [5] and [7] are independed. Indeed, the result of
[7] does not follow from [5] by taking k(¢z) =¢In¢. On the other hand, one can easily

choose k(z), satisfying (1.4) but not (1.6).
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In [8, 9] is carried out the subsequent research of the dissipation influence on the
stability of the equilibrium position for a system of the form (1.3). The following
conditions for the global asymptotic stability are obtained F(x) — +oc0 as [X| - o;

0<a()¢(x,y) <k(t,x,y) bW (x,y); ¢(x,»)>0 (x,yOR),

Ja=o; (1.8)
to
a is nonincreasing nonnegative differentiable function on R*, a(9)b(¢), is bounded and
there exists v(0<v <1), such that for all &,2(0 <k <supgfg Fx)/xf(x), Izinf, 0z $(x,v)).

__ T 0 o {
lim GE IMa(r)%aE—(l+k)a(r)DdTD:u(k)<1—v,
oo s 5 g

[a]” = max(0,—a). (1.9

In particularly, it is pointed that when a(f)=1, where b(¢) is the nondecreasing function

00 [

on R and Il/b =0 Where a() is the nonincreasing function and J'a(t)zoo the results of

this paper and the results of [7] are the same.
The equation (1.3) with the coefficient (¢, x, x) , satisfying the inequalities

0<a(t)ky(x,x) < k(t,x,X) <b()ky(x,X) , ky(x,¥)>0, ky(x,y)>0, (1.10)

has been investigated in [10, 11]. It is shown that if we define
Ky =sup(f(x)/x:0< x| M)¥2, ky = max{ky(x, y) : 2F (x) + y°}< min(F (M), F(-M)) , then
the sufficient conditions for asymptotic stability of the equilibrium position x=x=0 are

as follows
+00 t T+a

J'e_koB(t)J'ekoB(S)dsdt =00 EB(I,‘) =j'b(s)ds§ J’a(s)ds >y (1.12)
0 0 T

0

for sufficiently large >0, where: the numbers 0<a<rik,, and y>0 are some independed
constants for ky<+oo; or for all a >0 always must exists y=y(a)>0 as ky=+co.

Papers [7, 12-14] are devoted to the investigation of the stability for the mechanical
system of the following form

X+k(t,x)x+g()f(x)=0, (1.12)
where g[JC".
In [12] in conditions that

f(x)=x,0<ky<k(t,x)<k, g(t)>0, g(t)>0,

\g‘(t)/ U220

it is shown that lim(x(z), %(r)/ () = (0,0).

The more general result is obtained in [7]. If there exists a monotone function F(7)

< m = const
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such that the following expressions

ko), 80) ©Je)  _
O<e< +—=—L_<F() and [="dt=o (1.13)
YEOI Fro

hold then the x-axis is an attractor. On the other hand if k(t)/@+g(t) >0 and
_|'°° M/F(t)dt <o then this result is not true.

In [13] is presented the further reseach of the stability properties in conditions that
g(0)>a>0, , ‘g(r)/@ < N =const . In assumption that for any continuous function
¢: R - {|x|,lvi<H} and for all a>0 there exist T=T(a,H,$)>0, £E=&(aH,$)>0, such that

f+s

J’k(r,¢(r)) >a forall t>T, s>¢&,

k(l‘,x)+ g(t) 2(,[/(t)>0, ww(t) (t)dt:w, (1.14)
EORE) e

the equilibrium position of (1.5) is x-equi-asymptotically stable (¢7) is the continuous
and nonincreasing function).
In [14] the following conditions of the asymptotic stability of x=x=0 in x in the

case, when k(¢,x,x)=0, 20, lim g(r)=+0, 25(t)g(r) <3g>(z) are obtained. The
t - +oo

result is obtained for the general mechanical system and is applied in the problem on the
fall of the solid in the ideal liquid.

2. THE STABILITY RESEARCH IN THE CASE OF TIME DEPENDED VISCOSITY

We investigate the stability problem of the rest position x=x=0 of (1.1) on the basis
of limiting systems and limiting functions [1, 2].

Let the dissipation of the system is such that there exists a sequence of segments
[t,.t, +5,].(t, - +oo, s, 25 >0), such that for any continuous function (u,(¢), u,(¢)) :
R* - {lx| < H,|y| < H} the following relations hold

t/l +SU
k[{]1< N =const (¢t Oz, t, +s,]) , liminf J'k[T]dT >0
n — 0

t

ke] = k2, uy (1), uy (1)) - 21)

Under the condition (2.1) it follows the precompactness of (1.1) with respect to the
sequence [t,t,+s,] for each k[f]=k(z,ui(£),u>(£)), where (u(f),ux(?)):R" - {[x|<H,[y|<H} is
any continuous function [1, 2]. From here we conclude that asymptotic behaviour of
bounded solution (1.1) x=x(z) with respect to the sequence [t, ¢, +s,] as t,—+o is
defined by the limiting equation of the form [1]
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¥+ %] +f(x)=0, (2.2)
where k*(t) is such that

}k*(r)dr = lim }k[tnj +tldt, k] =k, x(), x(2)) .
0 J=%0
Consider the function
V=x*+2F(x), F(x)= I F@)dt
0

as a Liapunov function. The derivative of ¥ with respect to equation (1.1) has the
estimate

V(t,x, %) = 255 + 2.f ()% = 25(=k(t, x,2) | ¥ |7 %= f(x)) + 2. (x)% = 2k(t, x, 3) | 5 [7+2< 0

Hence, from here and under the condition (1.2) the equilibrium point of (1.1) x=x=0 is

uniformly stable. Moreover, if F(x) - + o as |x| - +oo then the motions (1.1) are uniformly
bounded.

The limiting function for W (¢, x) =k[¢]| x|**? with respect to any subsequence
{t30{¢,;} is as follows

t t
Q%) =k ()| ¥["** , where [k (t)dt = lim [[t,; +THT
0 ~*0

and consequently under the condition (2.1) the function &"(z)>0 on any set E0J[0,s] with
mesE £0. The set {V2(t,¢) : ¢ = const > 0} n {Q(z, ) = O}, defined by the theorems from
[1] for the problem for tOE is the set S ={x =0, F(x) =c =const >0}. By the form of
the limiting equation (2.2) the solution x =¢(¢) of (2.2) on the set S for tOE must
almost for all these ¢ satisfy f(¢(¢)) =0. But this is possible when F(¢(z))=0.

Thus, the set {V.%(¢,¢):c = const >0} n {Q(s,¥) =0} does not contain the whole
solution of (2.2). Then by the theorems 3.2 and 3.3 from [1] and 1.3 from [2] we can state
the following results.

Theorem 1. Under the conditions (1.2) and (2.1) the equilibrium position of (1.1)
x=x=0 is asymptotically stable uniformly in (xq, %) .

Theorem 2. Let the conditions (1.2) hold and instead of (2.1) the following conditions

t+T

k[f]< N =const (Ot OR™), lim inf J'k[T]dT >0 (2.3)

t—+oo, T o +oo

are true.

Then the equilibrium position x=x=0 of (1.1) is uniformly asymptotically stable.

If F(x) - +o as |x|- +oo, then under the conditons (1.2), (2.1), (2.3) we have
accordingly global equi-asymptotic and uniform asymptotic stability of x=x=0.

By the analogy of the preceding on the basis of the theorem on instability 3.4 from [1]
we can obtain the following result.

Theorem 3. Under the conditions of the preceding theorem with respect k(t,x,x)

and the condition that f(x)<0 for x>0 or f(x)<0 for x<0 for x<0 the equilibrium position
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x=x=0 of (1.1) is instable.
The theorem 1 is true in more general case of the damping coefficient unboundedness
k(¢, x,x) . Namely, under the condition that there exists the sequence [¢,,, +s] such that

for any conditions function (u1(¢),u2(2)):R" - {|x|,[v|<H} the equalities
1

o [1,ts Ha+1 t,*s
> J’k[r] drH =oo, liminf Ik[r]dr >0 (2.4)
n=li"r¢ n— t,
hold. We prove the theorem 1 under the replacement of condition (2.1) by (2.4).
Let (uy(),ux(t)):[fo,+0) - R{|x|<H,|v|<H} be any continuous function satisfying the
following inequality

[HIE (D) 2T < oo, KT = K(T, 1y (2), 1, (2))

From the first condition of (2.4) it follows the existence of subsequence ¢,;— o, for
which 7; - 0o
1y +s
1
Ly = [ kIt]luy(7) |"*dt - 0

Ly

Suppose that this is not true, namely that 7,,2¢,>0 for all n= some no. By the Gjelder
inequality [2] we consequently have
a+2
a2 0. 1 1 1 +1

0<g =g <O f kT2l 2l luy(0)lg drg <
u

nts +1[ 4, *s
SB J’k[r]drg E [ klr]luy(7) |a+2dTE

or for n=ny

B D™ B ketlugtoy pooar
J’k[r]dr <& A k[T]up (T) | °dT =
H t)l H
Summarising with nq , using the contrary assumption we obtain
1

o Bn +s H a+l ) t,+s ”
Y g [kt <e Yy [ krllu,(r) |"*drt <
n=no E I H n=no t,

<&’ [KTlup(r) [77°dT < +oo
Ln0
that is contrary to the condition (2.4).
Thus, the subsequence n; - +oo exists for which
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In]- +s
;= [ Krllu()[*"dr - 0
Lyj

Let x =x(¢,#,xp) be any motion of (1.1) bounded by the domain {| x|< H,| y|< H}.
The condition (1.2) implies that along this motion

im ¥ (2, x(0), 5(1)) = v
Z}Ok(r,x(r), X)) | X(T) |°2dT <V (19, xp) =V < +oo

hold. On the basis of the fact above the sequence #,; — +oo exists, for which

tn/’ +t
[ k(T x(T), X(1)) | X(T) | x(1)dt - 0 (2.5)
Ly
uniformly in zJ[0,s].
We construct the limiting equation for (1.1) along the considered solution x(r,zy,xo).

From (1.1) we have

t,+t t,+t

it +0)=5(t,) == [KT)(DMT— [ f(x(D)dT (2.6)

or
t, +t t

i(t, +6) = %(t,) == [ATIR@AT = [ £ (x(t, +5))ds . 2.7)
t, 0

From the stability of the zero solution (0,0) it follows the boundedness x(¢f) and
hence the family of solutions x, (r) = x(¢, +¢) is uniformly bounded and continuous that
is precompact. From here it follows the existence of subsequence ¢, such that
X (6) OES 71— 0,

Then we pass to the limit in (2.6) as n; — +oo, using (2.5) and assuming that
¥(t,;) - zo =const as n; » +oco. We obtain there exists a continuous function z = z(%),

such that x(z,; +¢) — z(#) uniformly in ¢0J[0,s] and the equality

20)= 20 - [ £ (5))ds 28)
0

holds. From here it follows that z(z) 1 C* and z(t) = 3" () .
Differentiating with respect to ¢ we obtain 3 (¢) == (" (¢)) . Whence

(et +1), 50t +0) - (0.5 5 @) == ).

Thus, we obtain some subset Q of the @ (x(t,%.xo)) limit-set with mes(Q) > 0. O is
semi-invariant with respect to the limiting system of the form

H'C(t) =y()
(0) ==/ (x(0))’

where 0<¢<s. At the same time the subset Q is the subset of the set
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21,0 :c=V" =conskn{Qt,») =0}, wich has the form {&=0,x:Ck; - x,F(x;) - V'/2}

by virtue of the second condition of (2.4) for tOF with mes E > 0. But this is by virtue of
both the limiting system view and relation f{x) =0 < x = 0 possible only if V"= 0, thus,
lim, | ., x(#) =lim,_ ., x(¢) = 0. So we proved the theorem.

Theorem 4. Under the conditions (1.2) and (2.4) the equilibrium position of (1.1)
x=x=0 is asymptotically stable.

3. THE STABILITY RESEARCH IN THE CASE OF TIMEDEPENDED ELASTICITY
Consider the equation of the following form
X+k(t,x,x)x+g@) f(x)=0 3.1)

Suppose that for all OR" and (x,y) O{|x|,|v|<H} the following relations hold

0<g(?) < gy =const, 3.2)
2k(t,x,y) , &)
20) + 2200 2/ky() =20, (3.3)

and there exists a sequence of segments [¢,,z,+s,], ¢, » +oo, 5,2>0, for which the following
conditions hold
t,ts
k(t,x,y) < N =const lim inf J'kl(t)dt >0, g(t)=gy =const>0. (3.4)
n—- o i

n

From the condition (3.2) it follows the precompactness of the equation (3.1) with
respect to the sequence [t,t,+s], for each A[f]=k(t,us(f),us(f)) where (u1(2),us(?)):
R~ {|x|,[v<|H[} is any continuous function. Fro: here the subset Q of the limiting points
@' (x(t,t0,x0)) Of the bounded motion (3.1), defined by the sequences {t,, D[tn,tns]} is semi-
invariant with respect to limiting equation

Ptk (i+g () f(x)=0, (3.5)
where

t t
[k (0)dt = lim [k, +TWT,
0 n/»aooo J

}g*(r)dr = lim }g[t,,/ +7ldr. (3.6)
0 nj=%*9

From it's definition the function g"(s) satisfies the inequality (with the exeption of
the set £J[0,s] with mes £ = 0)
O<gosg (N<g 37)

Let V =5c2/g(t) +2F(x) . The derivative of ¥ with respect to equation (3.1) has the
estimate
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V(e x,%) = 258/ g(0) = °¢(1)/ g% (1) + 21 (x) =
= —(2k(t, x, %)/ g(1) + (1) / g* (1)3* < —ky (%% <0

From here by taking into account (1.2) and (3.2) we have the stability of the
equilibrium position x=x=0 of (3.1).
Further, as earlier, we find that the limiting function for W(z, x) = k,(1)%* has a view

Q(t,x) = ky (1)x*, where k (/)>0 on the set E[0,s] with mesE#0. The set
Wit c) e =const >0yn{Q(r,x) =0} for ¢tOE is the set S ={x=0,F(x) =c/2 =const >0}.
Repeating the subsequent discussion as for (1.1) with respect both to the set S and the

limiting equation (3.5) we have the following results.
Theorem 5. Under the conditions (1.2), (3.2), (3.3) and (3.4) the equilibrium position
x=x=0 of (3.1) is asymptotically stable uniformly in (xy, Xg) .
If instead of conditions (3.4) we assume that for all /0JR" the following conditions
t+T

k(t,x,y)< N =cnst, lim inf J'kl(T)dT >0,
t

t -+, T - +00
g(t) = gg =const >0 (3.8)
hold, then the equilibrium position x=x =0 of (3.1) is uniformly asymptotically stable.
Theorem 6. Under the conditions (3.2), (3.3), (3.4), the condition (1.2) with respect
to k(t,x,x) and the condition f(x)x<0 for x<0 or f(x)x<O0 for x>0 the
equilibrium position of (3.1) is instable.
Suppose that the dissipation k(¢, x, x) is unbounded and the following relation hold

2k(t,x,y) + E0] >0ak(t,x,y)=0, a=const>0. (3.9)
g(®)

Then the following theorem is true.

Theorem 7. Let the conditions (1.2), (2.4), (3.2), (3.0) and the third condition of (3.4)
hold.

Then the equilibrium position x=x=0 of (3.1) is asymptotically stable uniformly in
(x0, %) -

By the conditions of the theorems 5-6 the coefficient g(f) may be small but bounded
above for all sOR" and may be more than some go>0 on the segments [z,.z,+s]. Suppose,
that g(¢) is a function with the same properties as above but unbounded above, that is

g()>0, [g()dr =
0
Let us pass in the equation (3.1) from the variable ¢ to T by means of formula
t
T={ g(s)ds .
0

Then

2
dr = /g(t)dt @ _ g(t)i. dx:g(t)

o, )
dt dr ' dr?

at? 2 g() dt’
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We have
x, &0 dx oo ds _
g(1) 72 + 2@ e +k(t,x,x) T +g(0)f(x)=0
or

x"+H g([(T)) +k(l‘(T),x,xl\lg(t(T)))E|+f(x) =0, (310)
2y =)

where x'=)'c/ v g(?) . The obtained equation is the equation of the type (1.1) and the

reseach methods used above for the equation of such type are true. Moreover from
asymptotic stability of the equilibrium position x'=x=0 of transformed equation (3.8) it
follows the asymptotic stability of equilibrium position x=x=0 of the primary equation
(3.1) in x . Hence, on the basis of the theorem 2 we have the following result.

Theorem 8. Let for all tOR* and (x,x)0{| x|,|x|< H} the following inequalities
hold

k@, x,x)  _ &() _
0<ky(r) < + < N =const ,
0 280

t+T

lim inf [ko(s)ds >0 (3.12)

t >+, T - +o0

Then the equilibrium position x=x=0 is uniformly asymptotically stable in

(x,)'c/@).

Now we study the stubility of the equilibrium position of (3.1) by the other way,
proposing that g(¢) is a function, unbounded above. Then the Liapunov function will be
positive defined with respect to x and it's derivative with respect to (3.1) will be
nonpositive. In this case the following theorems are true.

Theorem 9. Under the conditions (1.2), (3.3), first and second conditions of (3.4) and
the condition g(0)>0 for all tOR" the equilibrium position x=x=0 of (3.1) is
asimptotically stable with respect to x .

Theorem 10. Under the conditions (1.2), (3.3), (3.8) the equilibrium position
x=x=0 is uniformly asymptotically stable with respect to x .

As the equation (3.1) the problem on asymptotic stability of the equilibrium position
of the following equation

X+k(t,x,x)x+g(tx)f(x)=0 (3.12)

may be considered, where k(¢,x,x) and f are the functions eith the same properties as

above and g(z,x)0C .
Suppose that for all 1OR* and (x,y) O{|x|,|y|<H} the following asumptions

0<g(t,x) < g =const, ‘3—g (¢, x)| < ky = const ,
X
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2k (¢, x, X) . 1 a_g
g(t,x) gz(t,x) ot

(¢,x) = 2ky = const >0 (3.13)
hold, and suppose that there exists the sequence of segments [¢,, #,+s,] (¢, - +, 5,= 5 >0),
on wich the functions k(z, x,x) and g(¢,x) satisfy the following conditions
k(t,x,x) <N =const, g(t,x)=gy=const>0. (3.14)
The corresponding limiting equations wall have the form
Pk (Oi+g (6x)f(x) =0,

where £ (£), g (¢,x) are defined by thge formulas of the form (3.6).
By (3.12) for derivative of the functionV = J'cz/g(t,x) +2F(t,x) we have the estimate

P (b, %) = _EQk(t,x,fc) + 0g(t,x)/0t2+ dg(t,x)/0xx S.Cz < —kyi? <0.
0 &) g (t.x) 0

The limiting function for W(¢,x)=kex* is the same function Q(z,x)=kox .
Reasoning in the same way as in the case of (3.1) we have the following results.

Theorem 11. Under the conditions (1.2), (3.13), (3.14) the equilibrium positions
x=x=0 0f (3.12) is aszmptotically stable.

Theorem 12. Under the conditions (1.2), (3.13), the first condition of (3.14) and the

condition g(t,x) = go forall tOR™ and x O{| x| H} the equilibrium position =x=0
of (3.12) is uniformly asymptotically stable.

4, CONCLUSION

The obtained results in contrast to the results [3-14] are deduced uniformly on the
basis of the method of limiting functions and equations. The following comparative
analisis takes place.

In the case of time-depended viscosity the problem is considered with more general
nonlinear force of viscosity F = —k(t, x,x)| X|* X .

The condition of asymptotic stability (1.13) and the assumptions of [5, 7-11] with
respect to unboundedness from above of k(¢,x,x) are independed. As (1.4), (1.6), (1.8),
(1.10) and (1.11) from [5, 7-9] do not suppose the boundedness of k(¢,x,x) on any
sequence of segments {[z,, ¢, +s,],¢, — +o,s, =s >0}, but this is supposed in the first
inequality from (1.13). But in condition (1.13) the coefficient k(¢,x,x) may be enough
large outside of [z,, ¢, +s,], thus the enumerated conditions (1.4), (1.6), (1.8), (1.9),
(1.10) and (1.11) may by broken. The condition (1.13) is wider in comparison with (1.7),
(1.8), (1.9), (1.10), (1.12) from [7-9], becouse in contrast of pointed conditions it is
possible the equality k(¢,x,x) =0 outside [¢,, ¢, +s,], but from the second relation (1.7)
it follows the second unequality (1.13).
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In the case k& = k() the theorem 2 and the result from [6] is the same.

In the present paper in the case of time-depended elasticity more general dependences
k(t,x,x)=0 and g =g(¢,x) are admitted in comparison with [7, 13, 14]. As k =k(¢) or
k=k(t x), g=g(t) the conditions (2.4), (3.2) - (3.4) and the assumptions of [7, 13] are

independed. Becouse the conditions (2.4), (3.2) - (3.4) are given only with respect to the
sequence {[z,, ¢, +s,]} and the relations (3.4) are the conditions of uniform asymptotic

n'’'n
stability.
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O STABILNOSTI MEHANICKOG SISTEMA
SA JEDNIM STEPENOM SLOBODE

A. Andreyev, O. Yurjeva

U radu je obraden problem stabilnosti poloZaja ravnoteze mehanickog sistema sa jednim
stepenom slobode. Na osnovu opstih teorema [1,2] dobijeni su dovoljini uslovi asimptotske
stabilnosti za razlicite pretpostavke viskoznosti i elasticnosti. Sproveden je postupak uporedenja
dobijenih rezultata sa rezultatima drugih metoda.



