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Abstract. This paper discusses a systematic approach for selecting the minimum 
number of sensors for an Electromagnetic suspension system that satisfies both 
optimised deterministic and stochastic performance objectives. The performance is 
optimised by tuning the controller using evolutionary algorithms. Two controller 
strategies are discussed, an inner loop classical solution for illustrating the efficacy of the 
evolutionary algorithm and a Linear Quadratic Gaussian (LQG) structure particularly on 
sensor optimisation. 
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1. INTRODUCTION  

In recent years, MAGnetic LEVitation (MAGLEV) systems have been attractive to 
transport industry due to a number of advantages they offer over the conventional wheel-
on-rail systems [10]. In fact, MAGLEV trains have no mechanical contacts with the rail 
and therefore maintenance costs are reduced, although in general building MAGLEV rail 
infrastructure is more expensive than conventional rail infrastructure. Two most effective 
types of MAGLEV suspension exist. The first, which is considered in this paper, is the 
electromagnetic suspension (EMS) where the electromagnet is attracted to the rail and the 
second is the electrodynamic (EDS) where a repulsive force supports the vehicle over the 
track. In contrast with the wheel-on-rail system the MAGLEV suspension system is an 
unstable system with non-trivial performance requirements that have to be satisfied. As in 
every practical system, the EMS MAGLEV suspension has a number of outputs that can 
be used to implement control strategies. The diagram in Fig. 1 shows the general feed-
back control approach for a MAGLEV control system. The question in hand is deciding 
the number and nature of sensors required for the control system to achieve the required 
performance objectives under some constraints present in the MAGLEV system. This 
means that a number of objectives and constraints of the suspension have to be simultane-
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ously satisfied by varying the controller’s parameters for every feasible sensor set avail-
able. Clearly, this is not an easy task especially if the system has many outputs to select 
from. 

 
Fig. 1 Block diagram of typical MAGLEV suspension feedback control system 

The work presented in this paper discusses a systematic framework for sensor 
optimisation applied to a quarter-car magnetic suspension model, which aims to satisfy 
both disturbance rejection and robustness to parametric changes as well as the best ride 
quality with minimum possible effort using lowest possible number of sensors from the 
available sensor sets. In fact, the problem is posed in a multiobjective optimisation frame-
work to optimise the controller’s parameters, via a heuristic algorithm [4], for each avail-
able sensor set. 

Evolutionary algorithms are widely used in control engineering and have proved to be 
very efficient for controller optimisation in a number of problems in control systems [5]. 
Numerous genetic algorithms have been developed [1], although for the purposes of this 
work a recently developed genetic algorithm named Non-dominated Sorting Genetic 
Algorithm (NSGA-II) [3] is selected. The NSGAII principle is based on non-dominated 
sorting of the individuals in the chromosome and it is merged into the systematic frame-
work to optimise the performance of the MAGLEV for every possible sensor set. In 
particular, the efficacy of NSGAII tuning is illustrated on a classical structure with inner-
loop, while a Linear Quadratic Gaussian (LQG) structure is further utilised as the modern 
control approach for the systematic framework presented. 

The paper is organised as follows: The linear time invariant state space model of a 
quarter car is presented in section 2 along with all possible sensor combinations. Section 
3 presents the various inputs to the MAGLEV suspension, together with the objectives 
and numerous constraint limitations. Section 4 discusses the multiobjective constraint 
optimisation using evolutionary algorithms and section 5 the classical control optimisa-
tion. Section 6 presents the proposed systematic framework while conclusions are drawn 
in section 7. 

2. LINEARISED MAGLEV SUSPENSION MODEL 

The diagram of a one degree-of-freedom, `quarter-car' electromagnetic suspension 
system is shown in Fig. 2b. The suspension consists of an electromagnet with a ferromag-
netic core and a coil of N turns. The coil is separated into two sections that are connected 
such that a north and south poles are created and the flux is circulated through the rail so 
that the electromagnet is attracted to the rail which is made from ferromagnetic material. 
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The carriage mass is attached on the electromagnet, with zt the rail position and z the 
electromagnet position. The air gap (zt − z) is to be maintained close to the operating 
condition as required. Details are shown on the end view illustrated in Fig. 2a. 

 

Fig. 2a              Fig. 2b 

Fig. 2 Diagram of an EMS 

The LTI state space model is derived by considering small variations around the 
operating point (nominal) values of the coil current Io, flux density Bo, attractive force Fo 
and air gap Go as follows 

 
oot

oo

IiIGzzG
BbBFfF

+=+−=
+=+=

)(
 (1) 

where f, b, i and (zt − z) are small variations around the equilibrium point. The fundamen-
tal magnetic relationships are F ∝ B2 and B ∝ I / G, thus, the linearised expressions for 
the magnet are derived from (initially) Goodall, 1985 [9] and more recently Goodall, 
2008 [13] 
 )()( zzKiKb tzzi t
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where Ki = Bo / Io, K(zt − z) = Bo / Go and Kb = 2Fo / Bo. The voltage u is given by 
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dbNA
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diLRiu ++=  (3) 

where N is the number of coil turns, R the coil resistance, A the pole face area and L the coil 
inductance. Moreover, the force f depends on the mass M and the vertical acceleration 
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z . 
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substituting flux and force equations in (2) into (4) the acceleration z&&  is given as 
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from the flux equation in (2) and (3) the current equation is 
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and from (5) and (6) a state vector with the corresponding states is selected as 
])([ zzzix t −= & . 

The state space equation is expression is given by 
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where the state matrix Ag, the input matrix Bu, the disturbance matrix 
t

.
z

B  and the output 

matrix Cm are given as follows: 
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Note that the output matrix Cm here gives the five possible measurements y = [current 
(i), flux (b), air gap (zt − z), vertical velocity (

.
z ), vertical acceleration (

..
z )]T. The parame-

ter values for a one ton suspension system are shown in Table 1. 

Table 1 MAGLEV suspension parameters 

Carriage Mass ( M ) 1000kg Nominal force ( oF ) 9810N 

Nominal air gap ( oG ) 0.015m Coil’s Resistance ( R ) 10Ω 

Nominal flux density ( oB ) 1T Coil’s Inductance ( L ) 0.1H 

Nominal current ( oI ) 10A Number of turns ( N ) 2000 
  Pole face area ( A ) 0.01m2 
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2.1. Sensor Combinations available 

The sensor combinations available depend on the output matrix Cm in (9). The total 
number of sensor combinations (or sensor sets) is easily calculated from 12 −= sn

sN  
where Ns is the total number of all feasible sensor sets and ns the number of the total sen-
sors that can be used. Table 2 shows the available sensor sets with 1,2,3,4 and 5 sensors 
that results to a total of 31 sensor sets. Note that the sensor sets will be used for for the 
LQG control but not for the classical approaches. 

Table 2 Number of sensor sets available 

Number of 
measurements available 

Number of 
feasible sensor sets 

With 1 sensor 5 
With 2 sensors 10 
With 3 sensors 10 
With 4 sensors 5 
With 5 sensors 1 

3. INPUT DISTURBANCE AND PERFORMANCE REQUIREMENTS 

3.1 Input disturbances 

Two track input characteristics are considered, i.e. deterministic changes such as 
gradients or curves and stochastic (random) changes in the track position due to misalign-
ments during installation. In particular, 

3.1.1 Random Inputs to the MAGLEV suspension 

Random behaviour of the rail position is caused as the vehicle moves along the track 
by track-laying inaccuracies and steel rail discrepancies. Considering the vertical direc-
tion, the velocity variations are quantified by a double-sided power spectrum density 
(PSD) which in the frequency domain is expressed by 

 vrz VAS
t

π=&  (10) 

where Vv is the vehicle speed (in this work is taken as 15m/s) and Ar represents the track 
roughness equal to 1x10-7 (typical value for high quality track). The corresponding (one-
sided) autocorrelation function is given by  

 )(2)( 2 τδπτ vrVAR =  (11) 

and a more detailed analysis on stochastic description of track irregularities is found in [12]. 

3.1.2 Deterministic Inputs to the MAGLEV suspension  

The main deterministic inputs to a suspension for the vertical direction are the transi-
tions onto gradients. In this work, the deterministic input components utilised are shown 
in Fig. 3 and represent a gradient of 5% at a vehicle speed of 15m/s, with a transition to 
give an acceleration of 0.5m/s2 and a jerk of 1m/s3. 
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Fig. 3 Deterministic input to the suspension with a vehicle speed of 15m/s and 5% gradient 

3.2 Design requirements 

Fundamentally there is a trade off between the deterministic and the stochastic re-
sponse (ride quality) of the suspension. For slow speed vehicles, performance require-
ments are described in [6] and [7]. In particular, the practical objective is to minimize 
both the vertical acceleration (improve ride quality) and the attractive force applied from 
the electromagnets by minimizing the RMS current variations. These objectives, noted as 
φ1 and φ2, can be formally written as in (12) and the constraints are listed in Table 3. 

 rmsi=φ1  and rmsz
..

2 =φ  (12) 

4. MULTIOBJECTIVE CONSTRAINT OPTIMISATION VIA GENETIC ALGORITHMS 

The problem is clearly posed into multiobjective constraint optimisation that can be 
solved with the Non-dominated Genetic Algorithm II (NSGAII). More details for this 
type of genetic algorithm are given in [3]. NSGAII is used in both classical and LQG 
controller structures for tuning, although with different constraints and parameters. The 
parameters used are shown in Table 4. 

Table 3. MAGLEV suspension limitations 

Constraints Value 
RMS acceleration ( g%5≈ ), ( rmsz&& ) <0.5ms-2 
RMS gap variation, ((zt − z)rms)  <5mm 
Air gap deviation (deterministic), ((zt − z)p)  <7.5mm 
Control effort (deterministic), (up)  <300V(3IoRo) 
Settling time (ts) <3s 
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The crossover probability is generally selected to be large (90%) in order to have a 
good mixing of genetic material. The mutation probability is defined as 1/nu, where nu is 
the number of variables. This is appropriate in order to give a mutation probability that 
mutates an average of one parameter from each individual. The number of variables is 
different for each optimisation problem as shown on Table 4. except from the simulated 
binary crossover parameter (SBX) and the mutations parameter it was decided to use the 
values of 20 and 20 in all cases since they provide good distribution of solutions for the 
algorithm operations. The population and generation sizes are set to 50 and 500 respec-
tively for the classical controller optimisation and LQR tuning. Note that the LQR design 
serves as the ideal control performance for assessing the LQG design for every feasible 
sensor set. 

Table 4 NSGAII parameters 

Parameter Classical LQR LQG 
Crossover probability 0.9 0.9 0.9 
Mutation probability 1/nu (nu = 5) 1/nu (nu = 4)  1/nu (nu = 1)  
Population (Popnum) 50 50 25 
Generations (Gennum) 500 500 5 

LQG tuning is more straightforward, as there is only one variable (i.e, process noise 
matrix (W) is the variable discussed in section (6)) to tune (Popnum=25, Gennum=5). There 
is no systematic method to define those values as they depend on the nature of the prob-
lem. In fact, these values can be selected after a few trials or from experience. The more 
complicated the optimisation problem is, the higher the population number and the more 
generations are required. Moreover, the algorithm performance depends on the search 
space, i.e if it is too large the aforementioned generations and population may not be 
enough. In this work, the search space for both classical and LQG is decided after manu-
ally designing an initial controller. To achieve the limitations described in Table 3 the 
penalty function approach [2] is used. The constraint violation for each constraint, ki de-
fined in Table 3, is given as 
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Each constraint is normalized as in (14) for values less than the predefined and in (17) 
for values greater than the predefined. 
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Where, i
desk  is the desired constraint value and ki is the measured value. 

The overall constraint violation is taken as 

 ∑
=

ω=Ω
j

j

i
j

i kk
1

)()( )()(  (16) 



176 K. MICHAIL, A. C. ZOLOTAS, R. M. GOODALL 

The overall constraint violation is then added to each of the objective functions value l 

 )()()( )()()( i
m

i
m

i
m kRkk Ω+φ=Φ  (17) 

Where, Rm is the penalty parameter and φm(k(i)) the objective function value. 

5. CLASSICAL CONTROLLER OPTIMISATION 

Inner loop control is advantageous in controlling a MAGLEV vehicle [8]. Two 
controller structures are introduced in this section. A classical solution comprising an air 
gap outer-loop with flux inner-loop is compared with an air gap outer-loop with current 
inner-loop. The scheme is depicted in Fig. 4 for the air gap-flux case. The diagram also 
applies for the air gap-current case by replacing flux with current measurement. 

The aims of the classical solution are 
1) to demonstrate the effectiveness of the selected genetic algorithm 
2) to compare the optimised performance for the two inner loop approaches 
3) and to serve as a baseline for further investigation of schemes with more sensor 

combinations. 
The tuning procedure is then extended in an LQG framework which is specifically 

connected to appropriate sensor selection. 
A fixed set of classical compensators is considered, namely a proportional plus inte-

gral for the inner loops and a phase advance for the outer loop. The controller parameters 
are tuned simultaneously via the evolutionary algorithm NSGA-II in an attempt to opti-
mise the control system performance subject to all constraints being satisfied. The inner 
loop bandwidth must be within 50Hz-100Hz while the outer loop is chosen less than 
10Hz. A phase advance (PA) (18), with k the advance ratio and τ the time constant, is 
used to provide adequate phase margin in the range 35o-40o. 

 
st

stGPI
i

i
i

1+
= , 

1
1

+τ
+τ

=
s
skGPA o  (18) 

 
Fig. 4 Classical controller impementation with flux inner loop feedback 

Figure 5 depicts the Pareto-optimality between the ride quality z&& and the RMS coil 
current irms for the two controller configurations, i.e. the air gap-flux ((zt − z), b) and the 
air gap-current ((zt − z), i) case. It can be seen that a set of controllers can be chosen 
which satisfy all constraints for the ((zt − z), b) case but not for the ((zt − z), i), (more 
complex controller are necessary in the latter). 
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This can be seen in Table 5, where both case deterministic and stochastic responses 
are satisfied for all controllers for the ((zt − z), b) case. Robustness to parameter variations 
is considered only for the ((zt − z), b) configuration since the ((zt − z), i) configuration 
already violates two of the predefined constraints. A set of optimal controllers for the 
extreme cases of 2

..
37.0 −= msz  and 0.45ms-2 is selected, i.e. (19) is the first set of 

controllers (C1) and (20) is the second set (C2). The mass (M) is varied by ±25% from 
the nominal value of M = 1000kg, for the dynamical system. 

Table 5 Classical control – constraint values for each design 

 Constraint (zt − z) − b (zt − z) − i  
PM(degree) 35-45 35-40 6.5-7 

)(Hzf
outb  <10 3.2-3.8 ≈5.8 

)(Hzf
outb  50-100 76-99 ≈100 

Air gap peak (mm) <7.5 ≈5 ≈1 
RMS air gap (mm) <5 ≈1.5 ≈1.5 
Control effort (up)  <300 ≈10 ≈30 

RMS 
..
z (ms-2) <0.5 0.35-0.45 ≈0.98 

 
Fig. 5 Pareto front of controllers for (zt − z), b (empty dots) and (zt − z), i (dark dots) 
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The effect of the mass variations is reflected to the constraints where small variations 
from the nominal performance occur. Table 6 shows the resulting constraint values for a 
±25% mass variation. For the C1 controller it can be seen that the mass variations are 
accommodated and stability is maintained with small variation on the phase and the gain 
margins (similarly for the C2 case). In the case of C1 no constraint is violated for 25% 
mass variation but for the C2 controller set, being closer to the limits of the constraints, 
fails to satisfy the ride quality (vertical acceleration) requirement for the case where mass 
is 750kg. The deterministic disturbance (response to 5% track gradient) is successfully 
rejected in less than 3s and the steady state value of the air gap returns to the operating 
point (operating condition of 15mm). Of course, one might use the nominal model refer-
ring to the worse case mass uncertainty at the expense of more conservative solutions for 
the lower uncertainty cases. 

6. SENSOR OPTIMISATION VIA LQG 

Linear Quadratic Gaussian control is well documented in the literature of control sys-
tems [11], and thus its theoretical details are omitted. 

Table 6 Constraints values for PI1 and PA1 at ±25% mass variation 

 M=750kg M=1000kg M=1250kg 
 C1 C2 C1 C2 C1 C2 
PM(degree) 38.2 49.9 35 44.7 32 42.7 
fbin(Hz)  4 4.9 3.2 3.8 2.8 3.22 
fbout(Hz)  95 84 95 84 95 84 
Air gap peak (mm)  3.6 3.4 4.9 4.6 6.3 5.9 
RMS air gap (mm)  1.3 1.18 1.71 1.27 1.87 1.34 
RMS z&& )( 2−ms  0.47 0.61 0.37 0.44 0.3 0.36 
Control effort (up) 25.88 24 35 33 45 42 
Settling time (ts)  2.27 2.11 2.51 2.32 2.63 2.37 

Consider the following state space expression utilised for designing the Liner Quad-
ratic Gaussian controller (LQR and Kalman filter parts. 

 dwBBuxAx ω++=
.

, nCxy ω+=  (21) 

where, the state matrix A = Ag, the input matrix B = Bu, the disturbance matrix 
.

tz
w BB = and the output matrix C = Cm. All matrices are evaluated in equations (8), and (9). 

Note that ωd and ωn are the process and measurement noises respectively. These are 
uncorrelated zero-mean Gaussian stochastic processes with constant power spectral 
densities W and V respectively. In particular, the problem is to find u = Klqg(s)y which 
minimises the performance index in (22) for every sensor set combination available (this 
particularly relates to the information provided to the Kalman filter). 
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= dtRuuQxxEJ TT
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Here, Q and R are the state and control weighting functions respectively with 
Q = QT ≥ 0 and R = RT ≥ 0 of the Linear Quadratic Regulator part of the LQG controller.  

For the LQR design we choose output regulation, i.e. regulate acceleration 
..
z , air gap 

(zt − z) and the integral of air gap ∫(zt − z) (the last quantity specifically refers to the speed 
of response relating to achieving zero steady state error for the air gap). Thus, Q is in fact 
given by 
 zz

T
z CQCQ =  (23) 

where Cz is the output matrix selecting the above regulated signals, i.e. 
T

tt zzzzz ])()([
..

∫ −−  
and Qz is the corresponding weighting matrix. Both Q and R are tuned to recover the Pareto 
front of controllers that gives the optimum trade off between irms and 

..
z  while satisfying the 

preset constraints. The Kalman filter is designed such that ]}ˆ[]ˆ{[ xxxxE T −−  is minimised 
via choosing W and V. Therefore, a desired response is selected from the LQR design 
which can be considered as the optimum performance, which is what the Kalman tuning 
aims to achieve via W and V tuning for every sensor set. 

The scheme is shown in Fig. 6 with all possible measurements included. For appropri-
ate disturbance rejection, i.e. zero steady state error for the air gap signal, the LQR part is 
designed on an augmented system with the extra integral state of the air gap (however the 
Kalman filter is designed on the original state space matrices, but the integral state is later 
provided by an appropriately chosen selector matrix Ci). 

 
Fig. 6 Sensor optimisation via LQG 

The measurement noise weighting (V) is constant and given in (24) for all sensors (If 
available this can be found from sensor equipment data sheets, but here is derived from 
prior simulation of baseline controller designs): the noise covariance matrix is con-
structed by taking 1% of the peak from each measurement from the deterministic re-
sponse of the suspension. In this design the process noise matrix 

tzw BB &=  and the process 
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noise covariance refers to the track velocity input. The W weighting matrix is the variable 
to be tuned for the 31 sensor sets that are available as described in section 2. The 
objective functions to be minimised for the deterministic (Φdet) and for the stochastic 
(Φstoch) responses are given in equation (25). 

 ),,,,( )( zzzzbi VVVVVdiagV
t &&&−=  (24) 

 dtxx
t

ao∫ −=φ
0

det , )(stoch ao xxrms −=φ  (25) 

where, xo are the monitored states of interest of the closed loop with the LQR state feed-
back (e.g. ideal closed loop) and xa the monitored states of interest of the closed loop with 
the overall LQG controller (e.g. actual closed loop prior to adding sensor noise). Note 
that the sensor information entering the Kalman filter is affected by sensor noise. This 
makes a total of 6 individual objective functions. The selection procedure of the Kalman 
estimator that satisfy the desired requirements is based on the overall penalty parameter 
(26), which is zero if all constraints are satisfied, and close to zero if the constraints are 
almost satisfied (see equation (16)). The next criterion is the sum of the objective func-
tions given as 

 ∑
=

φφ=
6

1
stochdet ),(

i
S  (26) 

When the optimisation procedure is finished, for each sensor set, the final population 
is assessed and the individual(s) that result(s) to the smallest overall penalty parameter in 
equation (16) are selected, and among these the individual (Kalman estimator) that gives 
the smallest S in equation (26) is the preferred choice. 

The algorithm for the systematic framework developed is summarised as follows 
Step 1: Initialise algorithm by setting the NSGAII parameters and the performance re-
quirements (i.e. objectives and constraints) of the suspension. 
Step 2: Tune the LQR controller and select the desired performance to be used as the 
‘ideal’ performance for the Kalman estimator tuning. 
Step 3: Select a sensor set and check for observability/controllability via modal test. 
Step 4: Tune the Kalman estimator to achieve the ‘ideal’ LQR response for the cur-
rent sensor set. 
Step 5: Select the best controller using equations using Ω  and S . 
Step 6: Repeat steps 3-5 until all sensor sets are covered and save results. 

The final choice for the minimum number of sensors can be followed in an appropri-
ate manner. 

The state feedback tuning recovers a Pareto front that is depicted in Fig. 7. In these re-
sults a small relaxation to the deflection limit is considered (maximum air gap deflection 
allowed is 7.3mm) to accommodate the sensor noise effects in the next stage of the Kalman 
filter design. It can be easily seen that the ride quality is within limits and the current is 
around 1A. All controllers satisfy the preset constraints and therefore there are 50 control-
lers to choose from. Figure 7 assists in choosing the LQR gain vector which has gains of 
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The subscript indicates the corresponding gain from the input voltage to the 
corresponding state. 

The proposed framework provides 775 (Popnum × Ns) controllers from which the best con-
trollers are selected via equations (16) and (26). This gives one controller for each sensor set 
combination, with 24 out of 31 sensor sets found to meet all constraints. Eleven sensor sets are 
selected to compare the results that are listed in Table 7. The sensor sets that satisfy all 
constraints are marked (√). The flux density (id:1) as well as vertical acceleration 
measurements (id:3) are good choices as they both satisfy the required constraints. Kalman 
estimator gains can be used as a criterion to select which sensor set to use. Particularly, with 
vertical acceleration measurement the Kalman gain vector is Tfz

K ]100263444[ −−=
&&

 
and for the flux measurement the Kalman gain vector is Tfb

K ]2000401268899[ −−= . 

 

Fig. 7 LQR - Optimum Pareto front of controllers 

Therefore, the sensor set with the smallest possible Kalman gains can be used. It is 
also worth mentioning that adding more sensors increases the fault possibilities on the 
sensor elements, as well as incorporating more complexity in the system implementation. 
A first good option is the vertical acceleration, for which the state estimation from the 
Kalman filter quite satisfactory as can be seen from Fig. 8. Disturbance rejection is also 
acceptable in the deterministic case. The air gap settles to its operating condition (nomi-
nal value) within three seconds with small overshoot and undershoot within the prede-
fined limits (note that the Kalman filter is primarily a stochastic estimator thus with 
smaller Kalman gains a small drift occurs; this can be solved by increasing the Kalman 
gains, but at the expense of larger sensor noise entering the system). 
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Table 7 Comparison table for 11 sensor sets 

id Sensor 
Set 

rmst zz )( −  
(mm) 

pt zz )( −  
(mm) 

pu  

(V) 
z&&  

(ms-2) 
st  

(s) 
 

1 b  1.4 5.3 94 0.35 2.25 √ 
2 )( zzt −  1.4 4.8 81 0.35 6.43 x 
3 z&&  1.4 5.3 92 0.34 2.12 √ 
4 zi &,  1.4 5.6 101 0.35 6.17 x 
5 zi &&,  1.4 5.3 72 0.34 2.25 √ 
6 )(,, zzbi t −  1.4 5.2 66 0.35 2.25 √ 
7 zbi &,,  1.4 5.7 70 0.35 2.3 √ 
8 zzzi t &),(, −  1.4 5.5 88 0.35 6.22 x 
9 zzzbi t &),(,, −  1.4 5.6 63 0.35 2.3 √ 

10 zzzbi t &&),(,, −  1.4 5.3 65 0.35 2.2 √ 
11 zzzzbi t &&&,),(,, −  1.4 5.5 63 0.35 2.2 √ 

 
Fig. 8 State estimation with vertical acceleration measurement 



 Optimised Sensor Configurations for a Maglev Suspension System   183 

7. CONCLUSION 

The paper discussed a system study from a sensor optimisation point of view for a 
magnetic suspension system via a heuristic approach (NSGAII) on controller tuning. Two 
controller cases were presented: A classical one uses fixed sensor sets for illustrating the 
efficacy of the heuristic algorithm on controller tuning. The second case discussed an 
LQG controller design with the particular aim of sensor optimisation for the Kalman fil-
ter part. The study illustrated that most of sensors sets are able to provide satisfactory 
control of the magnetic suspension system. Note that the study identifies the minimum 
sensor sets required for appropriate performance, effectively reducing sensor fault scenar-
ios. In particular, the presented framework aims to identify potential sensor sets that can 
be used as a basis for future investigation on system fault tolerance via possible controller 
structure reconfiguration. 
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OPTIMALNA SENZORSKA KONFIGURACIJA ZA MAGLEV 
LEVITACIONI SISTEM SUSPENZIJE 

Konstantinos Michail, Argyrios C. Zolotas, Roger M. Goodall 

Ovaj rad se bavi sistematskim pristupom u odabiranju minimalnog broja senzora za sistem 
elektromagnetne levitacione suspenziju koji zadovoljava obe ciljeve determinističke i stohastičke 
optimalne performanse. Performansa je optimalna podešavanjem upravljanja uz pomoć razvojnih 
algoritama. Proučavaju se dve strategije upravljanja, unutrašnja petlja klasičnog rešenja za ilustraciju 
efikasnosti razvojnih algoritama i Linearne Kvadratne Gausijeve (LQG) strukture posebno za 
optimizaciju senzora. 

Ključne reči:  Optimizacija senzora, MagLev suspenzija, EMS optimizacija, genetski algoritmi, 
Kalmanov filter, razvojni algoritmi 
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