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Abstract. The focus of the paper is the learning of grasp primitives for a five-fingered 
anthropomorphic robotic hand via programming-by-demonstration and fuzzy modelling. 
In this approach, a number of basic grasps is demonstrated by a human operator wearing 
a data glove which continuously captures the hand pose. The resulting fingertip 
trajectories and joint angles are clustered and modelled in time and space so that the 
motions of the fingers forming a particular grasp are modelled in a most effective and 
compact way. Classification and learning are based on fuzzy clustering and Takagi-
Sugeno (TS) modelling. The presented method allows to learn, imitate and recognize the 
motion sequences forming specific grasps. 
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1. INTRODUCTION  

One of the most challenging areas in robotics is the dexterous manipulation with 
multi-fingered hands. Multi-fingered artificial hands, especially five-fingered artificial 
hands, are used in the fields of prosthetics, humanoid service robots, remote control and 
teleoperation in hazardous and dangerous environments, and last but not least in the 
entertainment industry. Anthropomorphic robotic hands have several features that make 
them attractive for the field of robotics: 

• provide better capabilities for handling objects, sized and shaped for human-
oriented environments  

• can be teleoperated by a human in a natural way 
• can be used to learn and implement human manipulation strategies 
• satisfy explicit requirements for design of humanoid robots and prosthetic devices 

(acceptance by humans). Despite all technical difficulties, many current robotic projects 
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aim to build human-like robotic hands (Bicchi 2000). A survey article by Biagiotti (Bi-
agiotti et al. 2002) compares the most well-known robotic hands regarding to their level 
of anthropomorphism and potential dexterity, i.e. how close they are to a human hand in 
terms of appearance and functionality.  

Our interest is to develop methods for control of anthropomorphic robotic (prosthetic) 
hands where the manipulation strategies are learned from human demonstrations. The 
idea is to exploit the structural similarity between the artificial and the human hand in 
order to achieve similar functionality. This will on the one hand allow for more intuitive 
teaching a control of complex robotic hands. On the other hand, this approach can be 
applied for the control of prosthetic hands. It is also desired to mimic the motion of the 
human hand as close as possible. Extensive research in the field of recognition and 
learning of human grasps showed that a large number of grasping tasks can be 
decomposed into pick-and-place sequences, which can be classified with a limited 
number of grasps. Such grasp taxonomies are developed by Cutkosky (Cutkosky 1989) 
and Iberall (Iberall 1997). Using such a classification, Kang describes a system, which 
observes, recognizes and maps human grasps to a robot manipulator (Kang et al. 1997). 
The human demonstration is captured by a stereo vision system and a data glove. Ikeuchi. 
presents an approach to programming-by-demonstration (PbD), where dynamic grasp 
sequences are identified with the help of Hidden Markov Models (HMMs) (Ikeuchi et al. 
2005). They show that if the information from a data glove is complemented with tactile 
sensors, the recognition rate is significantly improved. Ekvall and Kragic also address the 
PbD problem using the arm trajectory and hand pose as additional features for grasp 
classification (Ekvall et al. 2005). The mapping of human grasps to an artificial hand has 
been studied for the purpose of teleoperation, see (van der Smagt et al. 1998) and 
(Woitara et al. 2004). In both articles the objective is to find a mapping between the 
fingertip positions of the master and the slave hand. Lopes and Santos-Victor propose an 
approach to learning by imitation where a robot replicates the motions of a demonstrator 
based on a Visuo-Motor Map (Lopes et al. 2005). The mapping is built from motion data 
captured  by a data glove and a vision system. 

However, the approaches to learning and reproduction of human grasps are often 
adapted to the kinematical structure of the robotic hand. Direct mapping is very difficult 
unless the hand has a strictly anthropomorphic structure. In addition, the recognition and 
replication of human demonstrations are often treated as separate problems and solved 
with dedicated techniques. 

The approach presented in this paper deals with learning, recognition and imitation of 
human grasps with the help of Takagi-Sugeno fuzzy modelling. Two types of models are 
built: models of the fingertip trajectories, joint angle trajectories and inverse coordinate 
transformations between fingertip coordinates and joint angles. The new idea of this 
approach is to incorporate the discrete time variable of a grasping sequence in the 
modeling process (time clustering) and interpret the time as a model input (Palm et al. 
2006). One advantage of the approach is that it gives the hand motion a human-like 
appearance which is important for prosthetics. These models can be used to replay, scale 
and recognize demonstrated grasps in a most flexible way. We do not address the grasp 
stability problem since no tactile information is available from the demonstrations. Even 
if we had some, it will not be of great help since human tactile sensing is far more 
superior than what a robotic hand can achieve. Thus, the grasp stability problem is best 
addressed using force control (Tegin et al. 2007).  
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This paper is organized as follows: Section 2.1 deals with the five-fingered artificial 
hand, which is our experimental platform. In Section 2.2 the imitation of operator 
motions using a sensor glove and the subsequent recording of sequences of grasps is 
described. In Section 2.3 a simulation model of the hand for the generation of the grasp 
models is presented. Section 3 discusses the learning and classification of grasps using 
fuzzy clustering and TS-modeling. Section 4 presents experiments and simulations of 
selected grasps. Section 5 draws some conclusions and establishes directions for future 
work. 

2. EXPERIMENTAL PLATFORM FOR HUMAN-LIKE DEXTEROUS   MANIPULATION 

2.1. Artificial five-fingered hand 

The long-term goal of the project "Dexterous Manipulation" at the Center for Applied 
Autonomous Sensor Systems (AASS) is to develop an artificial hand which is capable of 
performing human-like manipulation. More specifically, the aim is to build an artificial 
five-fingered hand and develop a control methodology for grasping and manipulation in 
unstructured environments. The results should be applicable for the control of both 
robotic and prosthetic hands. 

The prototype of the hand and its simulation is shown in Figures 1 and 2, respectively. 
The main requirement was to reproduce the human hand's size and kinematics as close as 
possible.  

   

Fig. 1 The AASS dexterous hand                   Fig. 2 Simulation of the hand 

Therefore, the dimensions of the hand are approximately the same as those of an adult 
male person. All fingers can perform flexion/extension and abduction/adduction motions. 
The motion of the thumb is defined in a slightly different way due to its special 
kinematical structure. 
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2.2. Learning and imitation of grasps: general principles 

Although the human hand is able to deal with a great variety of manipulation tasks, 
researchers have found a small number of commonly observed grasping strategies, see 
(Cutkosky 1989). These have served as a reference for the design of robotic hands as the 
well as research in grasping and manipulation (Bicchi 2000, Biagiotti et al. 2002). In this 
paper we use the grasp taxonomy by Iberall (Iberall 1997) which describes 21 typical 
grasp configurations of the human hand. The classification of postures of the human hand 
into a set of grasps is motivated by the simplification of the complexity of human hand 
motions and actions. 

 

Fig. 3 Learning grasps from human demonstrations 

The idea of our approach to human-like dexterous manipulation is illustrated in 
Figure 3. In the initial phase, a human operator performs demonstrations of grasps (from 
Iberall 1997) manipulating various objects. During these demonstrations, a sensor glove 
(see Asada et al. 2000) captures the respective hand configurations and motion patterns 
and stores them in a computer. Next, models of all demonstrated grasps are created to 
form the basis of the learning controller. These models are used for the development of 
grasp primitives. The controller must be able to perform manipulation tasks with different 
complexity by blending or switching between basic primitives. 

To evaluate the performance of the learning controller, the learned grasps are first 
imitated and then compared with the hand motions from recorded demonstrations. If this 
imitation stage is successful, we need to include tactile and visual feedback depending on 
the type of task. Since the focus of this article is on the imitation part, in our simulations 
we assume that hand's position and orientation with respect to the grasped object are 
similar to those from the demonstration. To compensate for the uncertainty, the grasp 
motions continue until all fingers establish contact with the object. In a real experiment, 
force control must be activated at this stage to ensure a stable grasp. 
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2.3. Simulation of grasping processes with the artificial hand 

In order to study grasping processes and to develop the regarding models a 
kinematical and dynamical simulation of the artificial hand has been done. The hand 
consists of 5 fingers each of which equipped with 3 links and 3 joints (see Fig. 2). The 
kinematical relations can be studied by the example of a single finger (see Fig. 4). The 
transformation matrices include rotations and translations between coordinate frames. 
Translations and rotations are calculated by so-called homogeneous transformations with 
the help of which a point PC4 = (x4, y4, z4, 1)T in local homogeneous fingertip coordinates 
can be transformed into the base frame C0 by PC0 = T1 ⋅ T2 ⋅ T3 ⋅ T3 ⋅PC4 where a 
transformation matrix Ti defines the transformation between the coordinate systems Ci 

and Ci−1. 

 

Fig. 4 Configuration of a single finger 

With this hand model an analytical simulation of grasps becomes possible 
independently of recorded data from human operators. Special grasp primitives 
mentioned by (Iberall 1997) are 'Nippers pinch' (or precision grasp) and 'Extension 
grasp'. The nippers pinch was simulated as "grasping a stick" and the extension grasp as 
"touching a plane". 

The current development aims at the simulation of a group of grasp primitives and 
their transfer to the real artificial hand. Figure 5 shows four different grasp primitives on 
the basis of which a dexterous manipulation can be built. 



44 R. PALM, B. ILIEV 

 

Fig. 5  Four different grasp primitives, a) Touching a plane, b) Penholder grip,  
c) Precision grasp, d) Cylindrical grasp 

3. LEARNING OF GRASP PRIMITIVES BY FUZZY CLUSTERING AND  
TAKAGI-SUGENO MODELLING 

In this section we describe a new approach to learning by imitation of human grasping 
using a so-called time clustering. The learning is based on fuzzy modelling while the 
imitation is realized with a biologically inspired scheme corresponding to internal model 
control (Kawato 1999). 

3.1. Modelling of fingertip trajectories by time clustering 

Following the ideas described in Section 2.1  we performed experiments in which we 
collected data sequences of 15 different grasps (see Fig. 6) for which we used a data 
glove (CyberGlove) with 18 sensors. A common problem encountered in the research on 
programming-by-demonstration is the need for segmentation of the data sequences prior 
to grasp recognition (Ikeuchi et al. 2005). To avoid it, we recorded only one grasp at a 
time. Each record started with the pre-grasp posture and ended up with the final grasp 
posture of the hand. We repeated each demonstration several times to collect enough 
instances of every particular grasp. From those data, models for each individual grasp 
primitive have been developed. 

a b 

c d 
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Fig. 6 Grasp primitives 

In order to make of model of a complete grasp one should agree upon some features 
of the grasp like 

− Fingertip positions at selected time points 
− Joint angles. 
The latter is even more important if one wants to recognize a grasp from others only 

by using the kinematical data of the hand. Although these features are included or can be 
recovered from the data sequence  (Asada et al. 2000), their handling and generalization 
with respect to other grasps can hardly be managed. Therefore, there is a need for a 
model of the recorded grasp sequences that reflects the behaviour of the hand in time. 
Such a model is generated by Takagi-Sugeno fuzzy modelling and fuzzy clustering (Palm 
et al. 2003). The basic idea is to consider the 3 fingertip coordinates as model outputs as 
well as the time instants as model inputs (see Fig. 7).  

The incorporation of the time in the modelling process has the following advantages 

• The dynamic motion behaviour can be stored with only few parameters. 
• Hand motions get a human-like appearance 
• Recorded motions can be replayed faster/slower by choosing longer/shorter time 

intervals  between each motion step. 
• A "close hand" operation can be transformed directly into a "open hand" operation 

by  playing the time parameter backwards. 
The TS fuzzy model is constructed from captured data as follows. Let the trajectory of 

a fingertip be described by the nonlinear function 
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Using (3) as a local linear model one can express (1) in terms of an interpolation 
between several local linear models by applying Takagi-Sugeno fuzzy modelling 
(Takagi, Sugeno 1985) 
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Let τ be the time and x = (x, y, z)T the fingertip coordinates. Then the principle 
clustering and modelling steps are: 

• Choose an appropriate number χ of local linear models (data clusters) 
• Find χ cluster centers (ti, xi, yi, zi), ι = 1... χ in the product space of the data 

quadruples (t, x, y, z) by Fuzzy-c-elliptotype clustering 
• Find the corresponding fuzzy regions in the space of input data τ by projection of 

the clusters in the product space into Gustafson-Kessel clusters (GK) onto the input space 
(Gustafson, Kessel  1979) 

• Calculate χ local linear (affine) models (4) using the GK clusters from step 2. 
The degree of membership wi(t) of an input data point τ in an input cluster Ci is 

determined by 
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The projected cluster centers ti and the induced matrices Mi proj define the input clusters 
Ci, i = 1...c. The parameter mproj > 1 determines the fuzziness of an individual cluster.  



 Learning of Grasps for an Artificial Hand by Time Clustering and Takagi-Sugeno Modeling   47 

 

Fig. 7 Principle of Time Clustering 

3.2. Modeling of inverse kinematics 

In a similar way the inverse kinematics of each finger for a particular grasp is 
modelled. Let 
 )()(               );()( 1 xfqqfx −== tt  (6) 

be the nonlinear direct and inverse transformation for a single finger where the inverse 
transformation is not necessarily unique for the existing finger kinematics. From (6) one 
can easily obtain the differential transformations 
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where J(q) = ∂q / ∂x is the Jacobian and J+(x) is the pseudo inverse Jacobian. Since x(t) 
or )(tx& , respectively,  are already known from (4), the inverse kinematics in (7) remains 
to be computed. In order to avoid the time-consuming calculation of the inverse Jacobian 
at every time instant the inverse differential kinematics is approximated by a TS model 
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where wi(q) ∈ [0, 1] is the degree of membership of the angle vector q to a cluster with 
the cluster center qi, Ji

+(xi) are the pseudo-inverse Jacobians in the cluster centers xi. Due 
to the errors Δx = x (t) − xm(t) between the desired position x(t) and the real position xm(t) 
a correction of the angles is done using the analytical forward kinematics xm = f(q(t)) of  
the finger (see Fig. 8) which changes (8) into  
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where K is a scalar that has to be determined so that the optimization loop is stable. It has 
to be emphasized that the correction or optimization loop using the forward kinematics 
f(q(t)) is started at every new time instant and stops either until a lower bound  || Δx || < ε 
is reached or a given number of optimization steps is executed. Kawato (1999) used a 
related technique which suggests that humans use both kinematical and dynamical 
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internal models in movement planning and control. In our implementation, a grasp 
command activates the respective forward dynamic model of type (6) to generate the 
desired trajectory in Cartesian space. The desired joint space trajectories are obtained 
using the inverse kinematical model (8). The grasping motion continues until contact 
with the object is established. 

3.3. Classification of a given grasp 

In the previous section we showed that TS-fuzzy models can be successfully used for 
modeling and imitation of human grasps. Now, we will show that they can also be used 
for classification of grasps in data from recorded human demonstrations. This task can be 
divided into two aspects: 

• Segmentation of recorded data and identification of sequences corresponding to 
grasps. 

• Classification of the identified grasps according to the grasp primitive models. 
If we just observe captured motions of a human arm while executing several grasp actions 

it is very difficult to identify the exact moment when a grasp sequence starts and ends. Related 
research shows that this task can be solved efficiently only by fusion of additional information 
sources such as tactile sensing and vision (see (Ikeuchi et al. 2005)  and (Ekvall et al. 2005)). 
Since classification is the scope of this article we assume that the segmentation is already 
done (Palm et al. 2007). Under this condition, the problem can be solved as follows. 

Let the model of each grasp 
primitive be built with the same 
number of clusters i = 1...c so that 
each time period Tl, l = 1...L deter-
mining the duration of the λ-th 
grasp primitive is divided into χ−1 
time interval Δti = ti − ti−1, i = 2...c, 
for which Δti ≈ Δtj, i, j = 2...c, i ≠ j. 
The '≈'-sign means that the time 
clustering process leads only to ap-
proximated equidistant time intervals. In order to avoid calibration and re-scaling 
procedures let the grasp actions be executed in an environment comparable with the 
modeled grasp primitives. Furthermore let 
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where the matrix Vmodel l includes the output cluster centers xi of every finger for the λ-th 
grasp model. Let us now build a model of the grasp to be classified. From the clustering 
one obtains the matrix   

 graspthumbpinkieringmiddleindexgrasp VVVVVV ],,,,[=  (11) 

 
Fig. 8. Inverse kinematics with correction 



 Learning of Grasps for an Artificial Hand by Time Clustering and Takagi-Sugeno Modeling   49 

Then the decision on the grasp is done by applying the Euclidean matrix norm 

     
lgraspml VVN −=  (12) 

Finally, the unknown grasp is classified to the grasp model with the smallest norm 
min(Nl), l = 1...L, and the recognition of the grasp is finished.  

4. EXPERIMENTS AND SIMULATIONS 

In this section we present the experimental evaluation of the proposed approach for 
modelling and classification of grasps. We tested 15 different grasps (see Fig 6) and 
recorded several instances for each one to perform the modelling. Here, one of the tested 
grasps 'grasp CD-ROM' and its simulation is shown. The motion trajectories are 
generated according to the scheme in Fig. 8. The grasp is completed when the fingers 
establish contact with the object.  

Table 1. Recognition rates  

Class Grasp Percentage 
≥  75%   4. Hammer                  100% 
   8. Precision. grasp sphere                    87% 
 10. Small plane                  100% 
 11. Big plane                    85% 
 12. Fingertip small ball                  100% 
 14. Fingertip can                  100% 
 15. Penholder grip                    85% 
< 75%,   ≥ 50%   1. Cylinder                    71% 
   2. Big bottle                    57% 
   3. Small bottle                    57% 
 13. Fingertip big ball                    71% 
< 50%   5. Screwdriver                      0% 
   6. Small ball                    14% 
   7. Big ball                    28% 
   9. Precision grasp cube                    42% 

For each grasp and finger, 10 fingertip position models with 10 cluster centers have 
been generated from the collected data. Furthermore, 3 inverse Jacobian models for each 
grasp primitive and each  finger with 3 cluster centers have been built. Since there are 33 
time steps for the whole motion, time clustering results in the cluster centers 
ti = 2.04, 5.43, 8.87, 12.30, 15.75, 19.19, 22.65, 26.09, 29.53, 32.94. They are complemented 
by the corresponding cluster centers for the x, y, z coordinates of the fingertips. This 
equidistant spacing can be found for every individual grasp primitive as a result of the 
time clustering. Figure 9 presents the example of the index, middle, ring, and  pinkie 
finger and the thumb performing the task 'grasp CD-ROM'. All results show a good or 
even excellent modelling quality.  
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 a. Index finger time b. Middle finger c. Ring finger              

 
 d. Ring finger e. Thumb                             

Fig. 9 Time plots for "CD ROM grasp", original: red, model: blue 

The experimental results for the grasp recognition are divided into 3 groups of 
recognition rates: 

1. grasps with a recognition rate ≥ 75 % 
2. grasps with a recognition rate < 75 % - ≥ 50 % 
3. grasps with a recognition rate < 50 %.  
The results confirm the assumption that distinct grasps can be discriminated quite 

well from each other while the discrimination between similar grasps is difficult. There-
fore, merging of similar grasps and building of larger classes can improve the recognition 
process significantly. Examples of such classes are grasps (4, 5, 15), grasps (10, 11), and 
grasp (8,9). Table I shows the recognition rates for this method.  A comparison of this  
method with another fuzzy recognition method (Palm et al. 2007) and an approach based 
on Hidden Markov Models (HMM)  shows that the the method  presented here  is the 
most effective (Palm et al.  2008).  

5. CONCLUSIONS 

In this paper a new fuzzy-logic based approach to learning, imitation and classifica-
tion of grasps for a five-fingered artificial hand is presented. A set of grasping primitives 
of the human hand are captured using a sensor glove and represented by Takagi-Sugeno 
fuzzy models. Fuzzy clustering and modelling of time and space data is a applied to the 
modelling of fingertip trajectories of grasp primitives. In addition, fuzzy clustering is 
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applied to the classification and recognition of joint configurations for the inverse 
kinematics of each finger.  

The presented approach can be used to control anthropomorphic robotic hands as well 
as prosthetic hands where human-like behaviour is desired. To improve the PbD process 
the method will be further developed for the recognition and classification of operator 
movements in a robotic environment using more sensor information about the robot 
workspace and the objects to be handled. 
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UČENJE ZAHVATA VEŠTAČKOM RUKOM VREMENSKIM 
GRUPISANJEM I TAKAGI-SUGENO MODELIRANJEM 

Rainer Palm, Boyko Iliev 

U ovom radu fokus je na učenju primitivnog zahvata petoprstnom antropomorfnom robotskom 
šakom preko programiranja demonstracijom i fazi modeliranjem. U ovom pristupu, demonstrira se veliki 
broj osnovnih zahvata ljudskim operaterom koji nosi rukavicu podataka koja neprekidno zahvata položaj 
ruke. Rezultirajuća prstne putanjei i spojeni zglobovi sakupljeni su i modelirani u vremenu i prostoru 
tako da pokreti prstiju koji formiraju odgovarajući zahvat mogu da se modeliraju na najefektniji i 
kompaktniji način. Klasifikacija i učenje su zasnovani na fazi i Takagi-Sugeno (TS) modeliranju. 
Predstavljeni metod omogućava učenje, imitaciju i prepoznavanje pokreta koji slede formirajući specifične 
zahvate. 

Ključne reči:  Zahvat prepoznavanja, programiranje demonstracijom, manipulacioni roboti, 
robotska šaka; TS-modeliranje, vremensko grupisanje 
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