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Abstract. The paper addresses the stability margin assessment for linear systems under 
interval parameter uncertainties. The original robust stability problem is initially 
transformed into an equivalent problem of estimating the eigenvalues ranges of 
matrices whose elements are non-linear functions of independent interval parameters.  
A new algorithm for finding the exact value of stability margin (within error bounds) is 
suggested. It is based on the use of the inner and outer bounds on the right ends of the 
eigenvalue considered in order to determine as  narrow initial uncertainty region as 
possible. Then the constraint propagation approach is applied. It consists of two steps. First, 
one sweep of constraint propagation, relative to the interval components of the eigenvalue – 
eigenvector pair, is carried out, keeping the parameter intervals fixed. Next, the second 
sweep of constraint propagation, relative to the components of the interval parameters, is 
applied, keeping the reduced intervals of the eigenvalue – eigenvector pair fixed.  
A numerical example, illustrating the applicability of the algorithm suggested, is solved 
at the end. 
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1. INTRODUCTION 

It is well known that the stability analysis of linear circuits and systems under 
parameter uncertainties can be formulated as the problem of estimating the range of the 
eigenvalues of interval matrices (see e.g. [3] – [9]) because the stability margin of the 
curcuit studied is equal of the right end of the eigenvalue which is most to the right from 
the imaginary axis of the complex plane. 

Let A be a real n x n matrix, A - an interval matrix containing A, and A−, A+, A0 and 
RA – the left end, the right end, the center and the radius of A, respectively. We consider 
the following "perturbed" eigenvalue problem: 
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 0, [ , ] [ , ]Ax x A A A A R R− += λ ∈ = = + − A AA . (1) 
Ordinary letters will denote real quantities while bold face letters will stand for their 

interval counterparts.  
Each matrix A ∈ A is non-singular. 
For simplicity, the elements aij of interval matrix A can be considered as independent 

interval, but in general, they are non-linear functions of m parameters, which take their 
values within prescribed intervals, i.e. 

 1( ) ( ,..., ), , 1,...,

, 1,...,
ij ij m

l l

a p a p p i j n

p l m

= =

∈ =p
. (2) 

then the eigenvalue problem considered transforms as follows: 

 ( ) ,A p x x p= λ ∈ p . (3) 

Each matrix A(p), p ∈ p is non-singular. 
Some of the known methods for assessing the stability margin in the above formula-

tion are based on the solution of the following sub-problems:  
(i) find an inner bound on the right end of the range for the eigenvalue considered; 
(ii) find an outer bound on the right end of the range for the eigenvalue considered as 

well as outer bounds on the right ends of the components of the associated eigenvector; 
(iii) the final solution of the problem is then found by determining the exact right end 

of that eigenvalue range that is most to the right. 
Each of these sub-problems is solved for independent interval elements of matrix A 

(problem (1)) in [3], [4] and [6], as well as in the case of dependent interval elements of 
matrix A (problem (3)) [5]. 

Using the above inner and outer bounds it is suggested a new algorithm for obtaining 
the exact stability margin as  narrow initial uncertainty region as possible. This algorithm 
is based on an approach called constraint propagation.  

The present paper discusses the problem of determination of the corresponding exact 
right ends of the eigenvalues of matrices whose elements are non-linear functions of 
independent interval parameters. The problem statement is defined in Section 2. A new 
constrain propagation algorithm for obtaining the exact values of the right ends of the 
considered intervals is suggested in Section 3. It is the generalization of the constraint 
propagation approach suggested in [7]. The algorithm procedure includes two steps. First, 
it is applied the constraint propagation technique relative to the interval components of 
the eigenvalue-eigenvector pair, keeping the parameter intervals fixed. Second, the same 
technique, relative to the components of the interval parameters, is carried out, keeping 
the reduced intervals of the eigenvalue-eigenvector pair fixed. A numerical example, 
illustrating the simplicity and applicability of the algorithm suggested, is considered in 
Section 4. The paper ends with conclusion remarks in Section 5. 

2. PROBLEM STATEMENT 

The solution of initial basic eigenvalue problem (3) will be found making the follow-
ing transformation. Let the system (3) be written for the central parameters vector p0 

 0( )A p x x= λ  (4) 
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We will estimate only the interval of the maximum eigenvalue of matrix A(p0). In 
general, the new algorithm suggested later can be applied for any other real eigenvalues.  

Let  
 * 0 0( ) max( ( )), 1,...,kp p k nλ = λ =  (5) 

is a maximum eigenvalue while x* = (x1, x2, ..., xn)T is the corresponding eigenvector. We 
make the following assumption (ensuring structural stability of the problem). 

Assumption A1: Let λ*(p) and x*(p), corresponding to all  p ∈ p, remain real. 
On account of Assumption A1, the range 

 * { ( ) : }p pλ = λ ∈ p  (6) 
is a real interval. 

Without any loss of generality we need the second assumption. If the pair (x0, λ0) is 
the solution of (4) then 

Assumption A2: We assume that the absolute value of the sth component 
0| |sx  of 

vector x0 is the largest component of the other components, i.e. 

 0 0| | | |,s ix x i s≥ ≠  (7) 
Now x0 is normalized through  

 0 1sx = . (8) 

Further, we require that (8) be also valid for 
 ( ) 1,sx p p= ∈ p . (8a) 

We introduce the n-dimensional real vector 
 T

1 2( , , ... , )ny y y y=  (9) 
with  

 
( ), 1,..., ,
( )

i i

s

y x p i n n s
y p

= = ≠
= λ

 (10) 

Using (10), the eigenvalue problem (3) is 

 
 

1

1

( ) ( ) 0, 1,..., ,

.
( ) ( ) 0

n

ij j s i is
i
i s

n

sj j s ss
i
i s

a p y y y a p i n i s

a p y y a p

=
≠

=
≠

− + = = ≠

− + =

∑

∑
 (11) 

where aij = aij(p), p∈ p. 
Then we obtain the exact value of the stability margin considered applying the con-

straint propagation approach to the non-linear system (11). (The essence of this approach 
is described in [1] and [7].) 

In the framework (11), the constraint propagation technique consists in successive 
satisfaction of some constraints, given as equalities, and reduction of the initial region (box) 
of uncertain interval parameters. In the context of the problem considered, the constraints 
are given by the components of the interval eigenvalue problem under consideration. 
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3. A NEW CONSTRAIN-PROPAGATION ALGORITHM 

This algorithm finds the exact value of the stability margin within error bounds. It is 
based on the fact that the stability margin is equal of the right end of the eigenvalue range 
that is most to the right.  

Let the elements of matrix A(p) be the non-linear function of independent interval 
parameters pl, l = 1,...,m following (2). We write them in the following linear form with 
respect to the elements of vector p [2]: 

 ( ) ,ij ij ija p p p= α + ∈b p  (12) 
and substitute in system (11) 

 
1 1 1

1 1 1

[ ] [ ] 0, 1,..., ,

[ ] [ ] 0

n m m

ij ijl l j s i is isl l
i l l
i s

n m m

sj sjl l j s ss ssl l
i l l
i s

p y y y p i n i s

p y y p

= = =
≠

= = =
≠

+ α − + + α = = ≠

+ α − + + α =

∑ ∑ ∑

∑ ∑ ∑

b b

b b
. (13) 

Then we simplify the non-linear system (13) with respect to the components of 
parameter vector p and get the following system 

 
1

, , 1,...,
m

il l i l l
l

p p i n
=

= ∈ =∑ g f p , (14) 

where 

 

1

1

1

, 1,...,

, 1,..., ,

n

il isl ijl j
j
j s

n

i is ij j s i
j
j s

n

s ss sj j s
j
j s

i n

i n i s

=
≠

=
≠

=
≠

= α + α =

= − − + = ≠

= − − +

∑

∑

∑

g y

f b b y y y

f b b y y

 (14a) 

The system (14) is linear with respect to the components of the parameter vector p. 
The known methods solved the non-linear system with interval coefficients (11) with re-
spect to the components of interval vector y [5, 7]. Now we will suggest the algorithm, 
based on the constraint propagation approach, to obtain the same components of y using 
the linear parameter system (14) yet. It consists of two iterative procedures which call 
each others recursively. It can be described with the following way. The main procedure 
includes 3 steps. 

Procedure 1 

Step1: We start with the initial uncertainty region – interval vector (see Steps 1 and 2 in [7]) 

 y = y(0) = yout, (15) 

where yout
 is an interval vector whose components are the outer bounds of y(p), p ∈ p, 

calculated by the method suggested in [5]. 



  The Constraint Propagation Algorithm for Determining the Stability Margin of Linear Parameter Circuits and Systems   175 

We substitute the sth component of y with interval 

 [( ) , ( ) ]in out
s s s sy y+ += =y z , (16) 

where ( )in
sy +  and ( )out

sy +  are the right ends on the inner and outer bounds on the exact 

range *
sy , calculated by the methods suggested in [5]. 

Step 2: We apply the constraint propagation procedure (Procedure 2 from [5]) to ob-
tain the components of the interval vector y consisting of the eigenvalue considered and 
the components of the respective eigenvector, keeping the parameter intervals fixed.  

The stop criteria is two serial values of the interval components of vector y to be close 
enough. 

Step 3: We consider the components of vector y as an independent intervals and apply 
the constrain propagation to the linear system (14) with respect to the independent 
components of parameter vector p. Thus we calculate the new components of the interval 
vector p as follows:  

 For i = 1 to n do 

 
1

( )

( )

, 1...,

m

i il l
l
l qi

q
iq

i
q q q

q n
=
≠

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦= =

∩

∑f g p

p
g

p = p p

 (17) 

End 
The stop criteria is two serial values of the interval components of vector p to be close 

enough. 

Go to Step 2. 
In the first iteration of the procedure we start with initial vector y(0), calculated by (15) 

and (16), but in the other iterations we use the components of interval vector y obtained 
as a result in the end of the Step 3. 

The Procedure 1 is valid for all eigenvalues of interval matrix A(p), p ∈ p but to sim-
plify the presentation we described it only for the maximum one.  

The right end of the eigenvalue (the sth component ys) of the interval vector y, which 
is most to the right is equal to the stability margin of the analyzed system. 

4. NUMERICAL EXAMPLE 

The circuit studied is shown in Fig. 4.1. Assuming that Ri ∈ Ri, L ∈ L, C ∈ C, the 
vector of parameters is p = (R1, R2, R3, L, C)T with R1 = [97, 103], R2 = [198, 202], 
R3 = [99.999, 100.001], L = [4.999, 5.0001]mH, C = [238, 267]µF. Such systems arise in 
tolerance analysis of linear AC electric circuits. 
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Fig. 4.1 

We apply the Procedure 1 to obtain the stability margin of the circuit analyzed.  
First, in Step 1 we find the initial interval vector y0 according to (15) and (16) in the 

following way. 
It is seen from the example that the expressions (2) are non-linear functions of 5 parame-

ters 

 

1 2

2

3

3

1
. . , 11 1

. .

R R
RL k L kA k
R

C k R C k

+⎡ ⎤− −⎢ ⎥
⎢ ⎥= = +
⎢ ⎥−⎢ ⎥⎣ ⎦

   
1

0
M L

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

. (18) 

The components of the initial centre and radii parameter vectors are: 

 0 -3 -6 T(100 200 100 5*10 250*10 )Startp = , (19a) 

 -3 -6 T(3 2 0.001 0.01*10 12*10 )StartRp = . (19b) 

The linearization of aij(p) is made by the method suggested in [2] using (19). So we 
get the aij(p) as the affine functions: 

 

11 1 2 3 4
4

12 2 3 4
6 3

21 2 3 5

22 2

0 67 0.0001633 1.334 400.009 200.087 [ 0.0225 0.0225]
0.0022232 0.004446 1.3334 1.3338 10 [ 6.78 6.78]
4.4512 8.9024 5.34*10 2.6703*10 [ 3.0127 3.0127]

0.0446 0.04

a - . p p p p -
a p p p
a - p p p
a p

−

= + − + + −
= − + − + −
= + − + + −
= + 6

3 546 0.535*10 40.085 [ 0.0245 0.0245]p p+ − + −

(20) 

The numbers of the maximum eigenvalue and the maximum component of its 
eigenvector are k = 2 and s = 2, respectively. Hence, we are interested in the second 
component of interval vector y. According to (9) the vector y is: 

 1 2

2 λ
y x

y
y

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
  (21)  

resp. 

 
0 0

0 1 2
0 0
2

0.00366795
18.244878λ

y x
y

y
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦⎣ ⎦
. (22) 

Applying the method suggested in [5] we get the following outer bounds of the eigenvec-
tor considered components 
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[ 0.0037587 0.0035775]

[ 19.4124 17.08791]
out − −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
y , (23) 

the right end of the inner bound on the eigenvalue considered 

 2( ) ( ) ( ) 17.1669in in in
sy y+ + +λ = = = −  (24) 

and the right end of the exact range 

 ( ) ( ) 17.1669exact exact
sy+ +λ = = −  (25) 

Then based on (15) and (16) and using (23) and (24) we get the initial interval vector 

 (0) [ 0.0037587 0.0035775]
[ 17.1669 17.08791]

− −⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

y . (26) 

Secondly, we repeat the Steps 2 and 3 from the Procedure 1 until we obtain two serial 
values of the interval components of vector p to be close enough with the accuracy 
ε = 10−9. The final components of the centre and radii parameter vectors are reached on 
the 6th iteration and they are the following: 

 0 -3 -6 T(100 200 100 5*10 250*10 )Finalp = , (27a) 

 -3 -6 T(0.01327 0.0066612 0.001 0.01*10 0.00577889*10 )FinalRp = . (27b) 

Thus the right end of the sth component of the vector y is 
 ( ) 17.1669sy + = −  (28) 

But  
 ( ) ( ) ( )out out

s sy y+ + += = λ  (29) 
then 
 ( ) ( ) 17.1668out out

sy + += λ = −  (30) 
It is obvious from (25) and (30) that the right ends of outer bound and of the exact 

range considered, calculated by the new algorithm and the method from [5], are equal. 
Therefore, the new method suggested determines the right end of the stability margin of 
the circuit studied. 

The calculation times for this example are shown in Table 1. 

Table 1 

Step 1 in Procedure 1 
(methods from [5]) Whole the Procedure 1 

0.17 s 0.22 s 

5. CONCLUSION 

The new algorithm suggested obtains the exact value of the stability margin within error 
bounds. Some of the known methods for assessing it are based on determining the exact 
ranges and the respective inner and outer bounds of the considered eigenvalue-eigenvector 
pair solving the non-linear system (11) with respect to the components of the interval vector 
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y. Unlike this approach, a new constraint propagation algorithm which applies to the linear 
parameter system (14) is proposed with respect to the components of the parameter vector 
p. The algorithm suggested obtains directly the right end of the exact range of the 
eigenvalue analyzed and thus determines the exact value of the stability margin. 
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OGRANIČENJA PROPAGACIJA ALGORITAMA  
ZA ODREDJIVANJE GRANICA STABILNOSTI LINEARNIH 

PARAMETARA KOLA I SISTEMA 

Lubomir Kolev, Simona Filipova-Petrakieva 

Rad se bavi procenom granica stabilnosti za linearne sisteme pri neodredjenim parametrima 
intervala. Originalni problem stabilnosti je inicijalno transformisan u ekvivalentni problem procene 
sopstvenih vrednosti matrica čiji su elementi nelinearne funkcije nezavisnih intervalnih parametara. 

Novi algoritam za odredjivanje tacčne vrednosti granica stabilnosti (sa opsegom greške) je 
predložen. Zasniva se na unutrašnjim i spoljašnjim krivama tačnih granica sopstvenih vrednosti da bi 
se odredila uska inicijalna nepouzdanost oblasti. Onda je primenjen pristup ograničenja propagacije. 
On se sastoji iz dve faze. Prvo, pomeranje ograničenja propagacija, relevantnog za intervalne 
komponentne sopstvene vrednosti – par sopstvenoj vrednosti je ostvaren, tako što je parametar 
intervala fiksiran. Sledeće, drugo pomeranje ograničenja širenja, relativno za komponente intervalnih 
parametara, je primenjeno, tako što se skraćeni intrvali sopstvenih vrednosti – par sopstvenih 
vrednosti- fiksiraju. 

Dat je i numerički primer koji pokazuje primenjljivost predloženog algoritma. 

Ključne reči: algoritam, stabilnost, kolo 


