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Abstract. This paper investigates a planar ionized gas (air) flow in the boundary layer 
under the conditions of the so-called equilibrium ionization. The contour of the body 
within the fluid is porous. Ionized gas flows through the magnetic field of the strength 
Bm = Bm (x). It is assumed that the ionized gas electroconductivity is a function of the 
ratio of the longitudinal velocity and the velocity at the outer edge of the boundary 
layer. The governing equations of the boundary layer are by application of the General 
Similarity Method brought to a generalized form. The obtained generalized equation 
system of the boundary layer equations, besides the transversal coordinate η, contains 
three sets of parameters. As usual in this theory, the equations are numerically solved 
in a four-parametric three times localized approximation. Based on the obtained 
numerical solutions, some conclusions about the behaviour of certain boundary layer 
physical values and the characteristics of a compressible fluid flow have been drawn. 
Some guidelines concerning further studies of this problem are also given. 
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1. INTRODUCTION 

The paper investigates the ionized gas (air) flow in the boundary layer on the body of 
an arbitrary shape. The boundary layer is studied under conditions of the so-called 
equilibrium ionization, where the ionized gas flow is planar. The contour of the body 
within the fluid is porous. 

This investigation is actually a continuation of our earlier studies of the dissociated 
and ionized gas flow in the boundary layer. These studies were mainly concerned with a 
flow when the wall of the body within the fluid was nonporous. 

The primary objective of this, as with earlier investigations, is to use the Generalized 
Similarity Method to obtain the so-called generalized boundary layer equations of the 
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problem under study and to solve the obtained equations. The objective is to transform 
the governing equations into an equation system that represents a general mathematical 
model of the considered problem of the ionized gas flow in the boundary layer (the veloc-
ity at the outer edge of the boundary layer does not appear in this equation system). 

When the flow velocity of the gas (air) is high, as with supersonic flight of aircrafts 
through the Earth atmosphere, the temperature in the viscous boundary layer increases 
significantly. According to the literature, these temperatures often exceed 10 000 K [2]. 
These high temperatures cause thermochemical reactions - first dissociation and then 
ionization. The increase in temperature brings about the increase in inner, i.e. kinetic en-
ergy of the gas molecules. At a certain value of the temperature, the molecule collision 
energy enables dissolution of the gas molecules into the constituent atoms, i.e., gas 
association occurs. As for the air, oxygen dissociation occurs first and then nitrogen 
dissociation. 

With further increases in temperature, the dissociated gas atoms gain more energy. In 
their collisions, certain electrons in outer orbits get excited to a point that they are sepa-
rated from the atoms. The thermochemical phenomenon at which the electrons are sepa-
rated and positive ions are formed is called ionization. In this case, for example, air be-
comes a multicomponent mixture that consists of ions, electrons and atoms (oxygen and 
nitrogen). When the velocities of ionization and the reverse process - recombination are 
high enough, the thermochemical equilibrium is established in the ionized gas (air) flow. 

At high temperatures, characteristic for the boundary layer at supersonic gas (air) 
flow, both gas dissociation and ionization occur. As a result, the ionized gas becomes 
electroconductive. If ionized gas flows in the magnetic field of the strength mB , then 
under the influence of the outer magnetic field an electric flow appears. This electric flow 
leads to a volumetric force, which is called "electric volumetric" or Lorentz force. Joule's 
heat is also generated. Therefore, at ionized gas flow in the magnetic field, due to these 
two physical effects, new - additional terms appear in the corresponding boundary layer 
equations. These terms do not exist in the homogenous (unionized) gas boundary layer 
equations. 

As far as we know, the most important results in dissociated gas flow investigation 
are presented in the book by Dorrance [2]. The members of the school led by Loitsianskii 
[3, 4, 5] achieved significant scientific results in the field of the dissociated gas flow in 
the boundary layer. 

2. THE GOVERNING EQUATIONS OF THE CONSIDERED FLOW PROBLEM 

The above-mentioned paper [4], gives a detailed investigation of the boundary layer 
ionized gas flow along a planar nonporous plate when a magnetic field is present. The 
objective of that investigation was to obtain the so-called auto-model solution. Distribu-
tion of the strength of the outer magnetic field is defined in order to bring the governing 
partial boundary layer equations down to simple differential equations. 

This paper, however, gives results of the investigation of the ionized gas flow in the 
boundary layer on the body of an arbitrary shape. The flow is planar and steady and the 
contour of the body within the fluid is porous. The outer magnetic field is perpendicular 
to the contour of the body within the fluid. Since the thickness of the boundary layer is 
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small, it can be taken [4] that the strength of the magnetic field is Bmy = Bm = Bm (x) and 
that the magnetic Reynold's number is small enough. With the velocity vw(x), the gas is 
injected i.e., ejected perpendicularly to the porous wall of the body within the fluid. 

For the considered flow problem, the equations of the laminar steady and planar 
boundary layer under conditions of equilibrium ionization [4] are:  
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The corresponding boundary conditions, for the case of a porous wall of the body 
within the fluid are: 
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The equation system (1) represents a mathematical model of the flow problem under 
study. The equations of the previous governing system are: continuity equation, dynamic 
equation, and energy equation of the ionized gas boundary layer, respectively. In the 
equation system (1) and in the boundary conditions (2), the notation common in the 
boundary layer theory is used for the physical values and the necessary indices. Here, 
u (x, y) is longitudinal projection of velocity in the boundary layer, v (x, y) - transversal 
projection, ρ - ionized gas density, p - pressure, h - enthalpy, µ - coefficient of dynamic 
viscosity, σ - ionized gas electroconductivity and Pr - Prandtl number. The indices stand 
for: w - values on the wall of the body within the fluid and e - physical values at the outer 
edge of the boundary layer. 

Electroconductivity σ  is an important physical parameter of the ionized gas. In gen-
eral, it is a variable that depends on the temperature [4], i.e. the gas enthalpy h. Since we 
do not know the exact law on variation of electroconductivity, by analogy with MHD 
boundary layer [1, 8] it is assumed that the electroconductivity is a function of the ratio of 
the longitudinal velocity and the velocity at the outer edge of the boundary layer. There-
fore, it is assumed that the law on electroconductivity variation is determined by the 
expression  
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Based on the boundary conditions for the velocity and density at the outer edge of the 
boundary layer, the pressure p(x) can be eliminated from the system (1), as usual. This 
way, the governing equation system (1) is brought down to: 
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where the boundary conditions (2) remain unchanged.  
Variation of the electroconductivity law in MHD boundary layer theory, as stated [1, 

8], has enriched this theory. This is why we point out that the assumed law on variation 
of the ionized gas electroconductivity in the form of (3), also enriches the ionized gas 
boundary layer theory. Therefore, this paper is significant from the aspect of methodol-
ogy.  

3.THE  TRANSFORMATION OF THE GOVERNING BOUNDARY LAYER EQUATION SYSTEM 

In order to apply the General Similarity Method to the considered problem of the ion-
ized gas flow in the boundary layer, instead of the physical coordinates x, y, new vari-
ables are introduced in the form of 
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As with other already solved compressible fluid flow problems, a stream function ψ(s, 
z) is introduced in accordance with the relations  
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that are based on the continuity equation. 
In transformations (5) and (6) and further on, the values ρ0 and µ0 = ρ0ν0 stand for the 

known values of the density and dynamic viscosity of the ionized gas (air), while ν0 
represents the kinematical viscosity at a concrete point of the boundary layer. Here, ρw 
and µw denote the given distributions of these values on the wall of the body within the 
fluid.  

Applying the new variables (5) and the stream function (6), the governing equation 
system (4), together with the boundary conditions, is transformed into the following 
form: 
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The nondimensional function Q that appears in the equation system (7), is defined 
with the expression 
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Prandtl number - Pr is determined with the known expression 

 ,Pr
λ

µ
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 (9) 

where λ - coefficient of the heat conductivity and cp - specific heat of the ionized gas 
(mixture). 

In order to solve the fluid flow problems in the boundary layer by means of the Gen-
eral Similarity Method, it is necessary to obtain the corresponding momentum equation. 
By the usual procedure, from the first two equations of the system (4) - by integration 
transversally to the boundary layer (from the inner to the outer edge of the boundary 
layer) and by transformation of the variables, this equation is easily obtained. With this 
problem of the ionized gas flow, the momentum equation can take the three following 
forms: 
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where primes stand for the derivatives per the variable s. 
This equation is by its form the same for all the considered cases of the compressible 

fluid flow. 
The usual values are introduced in order to obtain the momentum equation. They are: 

parameter of the form f (s), magnetic parameter g(s), conditional displacement thickness 
∆*, conditional momentum loss thickness ∆**, conditional thickness ∆*

1, shear stress on 
the wall of the body within the fluid τw, nondimensional friction function ζ(s) and 
nondimensional values H and H1. With the ionized gas flow, these values are defined by 
means of the relations: 
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The characteristic function of the boundary layer Fmp, which is very important for the 
numerical solution of the generalized equation system, with the flow problem under study 
is: 

 .22])2([2 1 Λ−++−ζ= gHfHFmp  (12) 

Because of the porous wall of the body within the fluid, the porosity parameter Λ(s) 
is introduced by means of the expression: 
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where the value Vw(s) can be called conditional transversal velocity at the inner edge 
of the boundary layer. 

The equation system (7) contains new variables. This system with the corresponding 
boundary conditions represents a mathematical model of this problem of the ionized gas 
flow along the porous wall (where the electroconductivity is a function of the velocity 
ratio). The boundary condition for the partial derivative (transversal velocity) is ∂ψ/∂s ≠ 0 
With the application of the General Similarity Method, it is important that this boundary 
condition (underlined in (7)) should equal zero. Therefore, as with the incompressible 
fluid [5], the stream function ψ(s, z) is divided into two parts. To be more correct, a new 
stream function ),( zs∗ψ  is introduced in the form of the relation 

 ,),()(),( zsszs w
∗ψ+ψ=ψ           0)0,( =ψ∗ s   (14) 

in which ψ(s, 0) = ψw(s) denotes the stream function along the wall of the body within the 
fluid (z = 0).  

After the application of the relation (14), the system (7) is transformed into the 
following equation system: 
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It can be noticed that both equations of the system (15) contain an additional (under-
lined) term on the left side of the equals sign. In these terms the derivative dψw / ds, ap-
pears as a factor 
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It can be also noticed that, for the case of a nonporous wall of the body within the 
fluid (for which vw = 0) the underlined terms equal zero, which is quite logical, since 
these terms are the result of the porous contour of the body. The boundary conditions are 
the same as with the nonporous wall [10].  

4. THE GENERALIZED IONIZED GAS BOUNDARY LAYER EQUATIONS 

The obtained equation system (15) is analyzed in details in our investigation. The 
ideas applied both with incompressible and compressible fluid are not useful if we want 
to obtain the so-called generalized boundary layer equations [10] by means of the new 
stream function of the form Φ(s, η), where η is a new variable. Therefore, to obtain the 
generalized boundary layer equations of the considered ionized gas flow, it is necessary 
to introduce new transformations in the form of the following expressions: 
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In the defined similarity transformations, the following notation is used: η(s, z) - 

newly introduced transversal variable, Φ - newly introduced stream function, h - non-
dimensional enthalpy; while a and b are constants that will be discussed later. 

With this flow problem, based on the expressions for the newly introduced variable 
η(s, z), certain important values and characteristics of the boundary layer (11) can be 
written in the form of the suitable relations. These relations are:  
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Here, it is assumed that the already defined values A, B and A1 are continual functions 
of the variable s. 

With the nondimensional functions Φ and h , in the general similarity transforma-
tions (17), we introduced a local parameter of the ionized gas compressibility κ = f0, a set 
of parameters of the form fk of Loitsianskii type [5], a set of magnetic parameters gk and a 
set of porosity parameters Λk [10]. These sets are determined by the following expres-
sions:     
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and, as it is known, they play a role of independent variables instead of the longitudinal 
variable s. 

For k = 1 we will get f1(s) = u'eZ** - the already introduced parameter of the form (11). 
The first in the set of the porosity parameters Λ1(s) = −(Vw / 0ν ) Z **1/2 = −(Vw∆**/ν0) is the 
same as the already defined parameter (13). Just like with incompressible fluid, the 
parameters of the sets (19), satisfy the corresponding simple recurrent differential equations 
of the form: 



  Ionized Gas Boundary Layer on a Porous Wall of the Body...  153 

 

)(

.}]2/)12[()1{(

,])1[(

])[(

,2

111

111

1

1

... 3, 2, 1,=k

Fkfk
ds

df
u
u

ggFkfk
ds

dgf
u
u

,ff kFf1-k
ds
fd f

u
u

f
ds
d f

u
u

 kkkmp
k

e

e

kkkmp
k

e

e

kkkmp1
k

1
e

e

01
e

e

χ=Λ+Λ−+−=
Λ

′

γ=++−=
′

θ=++=
′

θ=κ=
κ

′

+

+

+

 (20) 

Applying the similarity transformations (17) and (19) to the equation system (15) af-
ter some calculation, the so-called generalized boundary layer equation system of the 
considered problem has been obtained. The obtained equation system, together with the 
transformed boundary condition, is: 
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 .for1,1 ∞→ηκ−=→→
∂η
Φ∂

ehh   

Distribution of the outer velocity ue(s) appears neither in the equations of the obtained 
system nor in the corresponding boundary conditions of the flow problem under study. 
Therefore, the equation system (21) represents a general mathematical model for the case 
of the ionized gas flow in the boundary layer along a porous wall of the body within the 
fluid when the law on electroconductivity variation is given with the expression (3). 
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It can be noticed that both of the equations of the system (21), on the left side of the 
equals sign, contain one term that depends on the porosity parameter Λ1 (13). Each of 
them contains a sum of terms on the right side of the equals sign that are multiplied with 
the function χk (20). If the wall of the body within the fluid is nonporous (vw = 0), all the 
porosity parameters equal zero. Then, all the mentioned terms in the system (21) equal 
zero. In that case, the equation system, obtained in this paper, comes down to the 
corresponding equation system for the case of the ionized gas flow along a nonporous 
wall [10].    

5. THE  NUMERICAL SOLUTION OF THE OBTAINED EQUATION SYSTEM 

As with other already solved flow problems, numerical solution of the obtained equa-
tion system (21) is possible only in the so-called n - parametric approximation. Assuming 
that all the parameters equal zero, starting from the second one, i.e., if fk = 0, gk = 0 and 
Λk = 0 when k ≥ 2, the obtained equation system is considerably simplified. The system 
(21) comes down to the system of partial differential equations with five independent 
variables: η, κ, f1, g1, Λ1; and it represents a four-parametric approxima-tion. In the 
boundary layer theory, it is common [5, 9] to neglect the first derivatives per some of the 
mentioned parameters, i.e., to perform the so-called localization. It is clear that in a de-
tailed analysis, with any flow problem, it is necessary to justify the localization per each 
of the parameters. Here, the localization is justified due to difficulties of mathematical 
nature. Therefore, the equation system for numerical solution in the four-parametric three 
times localized approximation (∂/∂κ = 0, ∂/∂g1 = 0, ∂/∂Λ1 = 0) together with the 
corresponding boundary conditions has the following form: 
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 (22) 

Note that in the equations of the system (22), the index 1 is, for practical reasons, left 
out from some (first) parameters. Both of the equations of the system (22) contain one 
(underlined) term that characterizes the porous wall of the body within the fluid. 
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Therefore, the equation system (22), obtained in this investigation, represents a gen-
eral mathematical model of the considered problem of the ionized gas flow, which is to 
be solved numerically. For numerical integration of the obtained system of differential 
partial equations of the third order, it is necessary first to decrease the order of the dy-
namic equation. By the usual transformation [9, 10]  

 ,),,,,( Λκηϕ=ϕ=
η∂
Φ∂

= gf
u
u

e

 (23) 

the order of the dynamic equation has been decreased, hence the corresponding equa-
tion system of this flow problem now is: 
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A concrete numerical solution of the obtained system of nonlinear and conjugated 
differential partial equations (24) is done by finite differences method, i.e., ″passage 
method″ or TDA method. According to the well-known scheme [9] of the planar integra-
tion grid, derivatives of the functions ϕ, Φ and h  are substituted with finite differences 
ratios. This way the equation system (24) is transformed into the equivalent system of 
algebraic equations that are: 
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In the previous system the coefficient ai
M,K+1 of the dynamic equation (I) is determined 

with the expression: 
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During transformation into an algebraic equation, for each layer (K + 1) and at each 
discrete point M of the planar integration grid, special attention was paid to the order of 
calculation of certain functions and to linearization [9]. As with other flow problems, the 
system (25) is solved by an iterative procedure, where i, j- stand for the number of itera-
tions. For the nondimensional function Q [10] and for the density ratio ρe / ρ that appear 
in the equations (24), approximate formulas are used in the forms of the following 
expressions: 
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These expressions are more appropriate for the dissociated gas (air) flow, and in the 
paper [3] they are determined based on the tables of the thermodynamic functions for the 
air. Determination of more correct laws on distribution of these ionized gas values may 
be the subject of some other investigation. For the numerical solution of the equation 
system (24), i.e., of the corresponding algebraic system, a programme is written in FOR-
TRAN programming language. The basis of this program is the one used in the investiga-
tion [9]. A segment of this programme is presented in the Fig. 1. Since the objective of 
this investigation is not to write a program, the notation used in the program is not given 
here. All the calculations in this paper are done for the concrete values of the constants a 
and b when a = 0.4408; b = 5.7140 that according to [9] represent the optimal values. 
Prandtl number is taken to be constant – Pr = 0.712. For the calculations of the 
characteristic functions B and Fmp at a zero iteration the values B0

K+1 = 0.469 and 
F 0

mp,K+1 = 0.4411 are accepted (as used in [9]).     
Since the equation system (22), i.e., (24) is localized per  compressibility, porosity 

and magnetic parameter; all these parameters have the role of simple parameters. That is 
why the equation system (24) is solved by the usual procedure [9], starting from the value 
f = 0.00 (flat plate), for the given values of the parameters κ, g and Λ. 

6. THE OBTAINED RESULTS AND CONCLUSIONS 

In this investigation, the numerical solutions of the system (24) are obtained in the 
form of tables defined by the written programme. Each of the tables represents the 
solution of the equation system in the corresponding cross-section of the boundary layer 
for the given values of the input parameters (κ, g, Λ). This paper presents only some of 
the most important results in the form of diagrams. Fig. 2 shows a diagram of 
nondimensional velocity u / ue, Fig. 3 shows a diagram of nondimensional enthalpy h , 
while Figs. 4 and 5 give diagrams of the characteristic B of the boundary layer and 
distribution of the nondimensional friction function ζ. A diagram of distribution of the 
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nondimensional velocity (Fig. 6) and a diagram of nondimensional friction function ζ 
(Fig. 7) for different values of the porosity parameter Λ are also given. Based on the 
given and other diagrams [10] the following important conclusions have been drawn:   

• The general conclusion is that profiles of the obtained solutions of the boundary 
layer equations of the considered ionized gas problem, according to their behav-
iour, are the same as with other problems of the compressible fluid flow [3].  

• The nondimensional velocity u / ue in each of the cross-sections of the boundary 
layer (different f) very quickly converges towards unity (Figs. 2 and 6).  

• A significant influence of the magnetic parameter g on the characteristics of the 
boundary layer A, B, Fmp and ζ is noticed.  

• The local compressibility parameter of the ionized gas κ = f0 does not have a 
significant influence on the nondimensional friction function ζ.  

• At low values, the porosity parameter Λ has a minor influence on profiles of the 
nondimensional velocities u / ue, while at higher values this influence is significant 
(Fig. 6). 

• A change in compressibility parameter has a great influence on distribution of the 
nondimensional enthalpy h  in the boundary layer of the ionized gas. 

• The porosity parameter Λ, however, has a greater influence on nondimensional 
friction function ζ (Fig. 7), as well as on the characteristic function Fmp. Therefore, 
the porosity parameter also has a significant influence on the boundary layer 
separation point.  

Once again, it is pointed out that, for calculation of the ionized gas boundary layer, 
we have used the method based on the application of the Saljnikov's version [9] of the 
General Similarity Method. This method is actually based on solution of the correspond-
ing generalized equation system of the considered flow problem. The solutions of the 
obtained equations explain several general rules, some of which are stated above.   

However, there are some difficulties in the application of the General Similarity 
Method to the compressible fluid flow problems. These difficulties are usually of 
mathematical nature. 

The investigation of the dissociated gas flow in the boundary layer [3, 7], has showed 
that the compressibility parameter has a great influence on distribution of the 
nondimensional enthalpy at the cross-section of the boundary layer. It has been 
determined that this parameter changes even the general characteristics of the behaviour 
of this distribution. Therefore, it can be concluded that with the considered ionized gas 
flow problem the corresponding equation system (21) should be solved without 
localization per this parameter. Thus, we would obtain more correct results in terms of 
quantity. This, however, means more mathematical, i.e., numerical difficulties. 

Finally, let us point out, that determination of more correct laws on distribution of the 
physical values Q and ρe / ρ (26) in the ionized gas boundary layer would be of great 
interest in further studies. It is obvious that a solution of the ionized gas boundary layer 
equations without localization per parameter g and especially per porosity parameter Λ 
would mean a great contribution to the boundary layer theory.  
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C     SOLUTION OF THE DYNAMIC EQUATION  
C 
C     COEFFICIENT OF THE DYNAMIC DIFFERENTIAL EQUATION 
C 
  11  X=DELET/(2.*BKI**2) 
      X1=X*DELET 
      X2=2.*X1 
      DO 20 M=2,K3 
      R1=FRSPI*F1R*(BRPI(M)-BPS(M))/DELFR+BRPI(M)*(VA*BKI**2+ 
     1   F1R*(2.-VB))/2. 
      R1=R1*X+(VFQR(M+1)-VFQR(M-1))/4. 
      AKJIM=VFQR(M)-R1  
      AKJIM=AKJIM-VL1*DELET/(2.*BKI) 
      CKJIM=VFQR(M)+R1  
      CKJIM=CKJIM+VL1*DELET/(2.*BKI) 
      R2=F1R*ARPI(M)*(1.+FRSPI/DELFR)+(G1*CRPI(M)/(1.-F0))*(1.-ARPI(M)) 
      BKJIM=VFQR(M)+X1*R2 
      R3=F1R*CRPI(M)/(1.-F0)+FRSPI*F1R*ARPI(M)*APS(M)/DELFR 
      GKJIM=-X2*R3  
C 
C     PASSAGE COEFFICIENTS 
C       
      APVIM=2.*BKJIM-AKJIM*EKP(M-1) 
      F33=DABS(APVIM) 
      IF(F33-EPS3)8,7,7 
   8  APVIM=EPS3 
   7  CONTINUE 
      DKP(M)=(AKJIM*DKP(M-1)-GKJIM)/APVIM 
  20  EKP(M)=CKJIM/APVIM 
C 
C     SOLUTIONS OF THE DYNAMIC EQUATION BY THE PASSAGE METHOD 
C 
      M=N-1 
  30  ARRI(M)=DKP(M)+EKP(M)*ARRI(M+1) 
      M=M-1 
      IF(M-2) 31,30,30 
  31  DELAM=0. 
      N1=N-1 
      DO 45 M=2,N1 
      DELA=DABS(ARRI(M)-ARPI(M)) 
      IF(DELAM-DELA) 44,45,45 
  44  DELAM=DELA 
  45  CONTINUE 
C 
C     NUMERICAL DETERMINATION OF THE FUNCTION FI 
C 
      BRRI(2)=3.*DELET/8.*(ARRI(1)+3.*ARRI(2)+3.*ARRI(3)+ARRI(4)) 
      BRRI(2)=BRRI(2)-DELET/3.*(ARRI(2)+4.*ARRI(3)+ARRI(4)) 
      BRRI(2)=BRRI(2)+BRRI(1) 
      N2=N-2 
      DO 50 M=1,N2 
      BRRI(M+2)=DELET/3.*(ARRI(M)+4.*ARRI(M+1)+ARRI(M+2))+BRRI(M) 
  50  CONTINUE 
      DELBM=0. 
      DO 55 M=2,N 
      DELB=DABS(BRRI(M)-BRPI(M)) 
      IF(DELBM-DELB) 59,55,55 
  59  DELBM=DELB 
  55  CONTINUE 

Fig. 1. A segment of the written programme in FORTRAN 
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Fig. 2. Diagram of the nondimensional 

velocity u / ue 
Fig. 3. Diagram of the nondimensional 

enthalpy h  

 
Fig. 4. Graphic of the characteristic B of 

the boundary layer 
Fig. 5. Distribution of the nondimensional 

friction function ζ 

 
Fig. 6. Diagrams of the nondimensional 

velocity u / ue for different values of 
Λ (f = 0.30) 

Fig. 7. Distribution of the nondimensional 
friction function ζ for different 
values of the parameter Λ 
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GRANIČNI SLOJ JONIZOVANOG GASA NA POROZNOM ZIDU 
TELA ČIJA JE ELEKTROPROVODNOST FUNKCIJA ODNOSA 

BRZINA 
Branko R. Obrović, Slobodan R. Savić 

U radu se istražuje ravansko strujanje jonizovanog gasa (vazduha) u graničnom sloju u 
uslovima tzv. ravnotežne jonizacije. Kontura opstrujavanog tela je porozna. Jonizovani gas se 
kreće u magnetnom polju jačine Bm = Bm (x). Pri tome se pretpostavlja da je elektroprovodnost 
jonizovanog gasa funkcija odnosa podužne i brzine na spoljašnjoj granici graničnog sloja. Polazne 
jednačine graničnog sloja su primenom Metode uopštene sličnosti dovedene na uopšteni oblik. 
Dobijeni uopšteni sistem jednačina graničnog sloja, pored poprečne koordinate η, sadrži i tri 
skupa parametara. Kako je to uobičajeno u ovoj teoriji ove jednačine numerički su rešene u 
četvoroparametarskom tri puta lokalizovanom približenju. Na bazi numeričkih rešenja izvedeni su 
zaključci o ponašanju pojedinih fizičkih veličina i karakteristika graničnog sloja razmatranog 
problema strujanja stišljivog fluida. Date su i smernice za dalja moguća istraživanja ovog 
problema strujanja fluida. 

Ključne reči:  Granični sloj, jonizovani gas, ravnotežna jonizacija, elektroprovodnost jonizovanog 
gasa, porozna kontura, metoda uopštene sličnosti, parametar poroznosti 


