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Abstract. This paper investigates a planar ionized gas (air) flow in the boundary layer
under the conditions of the so-called equilibrium ionization. The contour of the body
within the fluid is porous. Ionized gas flows through the magnetic field of the strength
B,, = B,, (x). It is assumed that the ionized gas electroconductivity is a function of the
ratio of the longitudinal velocity and the velocity at the outer edge of the boundary
layer. The governing equations of the boundary layer are by application of the General
Similarity Method brought to a generalized form. The obtained generalized equation
system of the boundary layer equations, besides the transversal coordinate 1, contains
three sets of parameters. As usual in this theory, the equations are numerically solved
in a four-parametric three times localized approximation. Based on the obtained
numerical solutions, some conclusions about the behaviour of certain boundary layer
physical values and the characteristics of a compressible fluid flow have been drawn.
Some guidelines concerning further studies of this problem are also given.
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1. INTRODUCTION

The paper investigates the ionized gas (air) flow in the boundary layer on the body of
an arbitrary shape. The boundary layer is studied under conditions of the so-called
equilibrium ionization, where the ionized gas flow is planar. The contour of the body
within the fluid is porous.

This investigation is actually a continuation of our earlier studies of the dissociated
and ionized gas flow in the boundary layer. These studies were mainly concerned with a
flow when the wall of the body within the fluid was nonporous.

The primary objective of this, as with earlier investigations, is to use the Generalized
Similarity Method to obtain the so-called generalized boundary layer equations of the
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problem under study and to solve the obtained equations. The objective is to transform
the governing equations into an equation system that represents a general mathematical
model of the considered problem of the ionized gas flow in the boundary layer (the veloc-
ity at the outer edge of the boundary layer does not appear in this equation system).

When the flow velocity of the gas (air) is high, as with supersonic flight of aircrafts
through the Earth atmosphere, the temperature in the viscous boundary layer increases
significantly. According to the literature, these temperatures often exceed 10 000 K [2].
These high temperatures cause thermochemical reactions - first dissociation and then
ionization. The increase in temperature brings about the increase in inner, i.e. kinetic en-
ergy of the gas molecules. At a certain value of the temperature, the molecule collision
energy enables dissolution of the gas molecules into the constituent atoms, i.e., gas
association occurs. As for the air, oxygen dissociation occurs first and then nitrogen
dissociation.

With further increases in temperature, the dissociated gas atoms gain more energy. In
their collisions, certain electrons in outer orbits get excited to a point that they are sepa-
rated from the atoms. The thermochemical phenomenon at which the electrons are sepa-
rated and positive ions are formed is called ionization. In this case, for example, air be-
comes a multicomponent mixture that consists of ions, electrons and atoms (oxygen and
nitrogen). When the velocities of ionization and the reverse process - recombination are
high enough, the thermochemical equilibrium is established in the ionized gas (air) flow.

At high temperatures, characteristic for the boundary layer at supersonic gas (air)
flow, both gas dissociation and ionization occur. As a result, the ionized gas becomes
electroconductive. If ionized gas flows in the magnetic field of the strength B, , then
under the influence of the outer magnetic field an electric flow appears. This electric flow
leads to a volumetric force, which is called "electric volumetric" or Lorentz force. Joule's
heat is also generated. Therefore, at ionized gas flow in the magnetic field, due to these
two physical effects, new - additional terms appear in the corresponding boundary layer
equations. These terms do not exist in the homogenous (unionized) gas boundary layer
equations.

As far as we know, the most important results in dissociated gas flow investigation
are presented in the book by Dorrance [2]. The members of the school led by Loitsianskii
[3, 4, 5] achieved significant scientific results in the field of the dissociated gas flow in
the boundary layer.

2. THE GOVERNING EQUATIONS OF THE CONSIDERED FLOW PROBLEM

The above-mentioned paper [4], gives a detailed investigation of the boundary layer
ionized gas flow along a planar nonporous plate when a magnetic field is present. The
objective of that investigation was to obtain the so-called auto-model solution. Distribu-
tion of the strength of the outer magnetic field is defined in order to bring the governing
partial boundary layer equations down to simple differential equations.

This paper, however, gives results of the investigation of the ionized gas flow in the
boundary layer on the body of an arbitrary shape. The flow is planar and steady and the
contour of the body within the fluid is porous. The outer magnetic field is perpendicular
to the contour of the body within the fluid. Since the thickness of the boundary layer is
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small, it can be taken [4] that the strength of the magnetic field is B,,, = B,, = B,, (x) and
that the magnetic Reynold's number is small enough. With the velocity v,(x), the gas is
injected i.e., ejected perpendicularly to the porous wall of the body within the fluid.

For the considered flow problem, the equations of the laminar steady and planar
boundary layer under conditions of equilibrium ionization [4] are:
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The corresponding boundary conditions, for the case of a porous wall of the body
within the fluid are:

u=0, v=y,(x), h=h, for y=0,
—_— (2)

u—u,(x), h— h,(x) for y—oo.

The equation system (1) represents a mathematical model of the flow problem under
study. The equations of the previous governing system are: continuity equation, dynamic
equation, and energy equation of the ionized gas boundary layer, respectively. In the
equation system (1) and in the boundary conditions (2), the notation common in the
boundary layer theory is used for the physical values and the necessary indices. Here,
u (x, y) is longitudinal projection of velocity in the boundary layer, v (x, y) - transversal
projection, p - ionized gas density, p - pressure, /4 - enthalpy, p - coefficient of dynamic
viscosity, ¢ - ionized gas electroconductivity and Pr - Prandtl number. The indices stand
for: w - values on the wall of the body within the fluid and e - physical values at the outer
edge of the boundary layer.

Electroconductivity o is an important physical parameter of the ionized gas. In gen-
eral, it is a variable that depends on the temperature [4], i.e. the gas enthalpy 4. Since we
do not know the exact law on variation of electroconductivity, by analogy with MHD
boundary layer [1, 8] it is assumed that the electroconductivity is a function of the ratio of
the longitudinal velocity and the velocity at the outer edge of the boundary layer. There-
fore, it is assumed that the law on electroconductivity variation is determined by the
expression

u

e

c= 00(1 —l), (o, =const.). 3)

Based on the boundary conditions for the velocity and density at the outer edge of the
boundary layer, the pressure p(x) can be eliminated from the system (1), as usual. This
way, the governing equation system (1) is brought down to:
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where the boundary conditions (2) remain unchanged.

Variation of the electroconductivity law in MHD boundary layer theory, as stated [1,
8], has enriched this theory. This is why we point out that the assumed law on variation
of the ionized gas electroconductivity in the form of (3), also enriches the ionized gas
boundary layer theory. Therefore, this paper is significant from the aspect of methodol-

ogy.

3.THE TRANSFORMATION OF THE GOVERNING BOUNDARY LAYER EQUATION SYSTEM

In order to apply the General Similarity Method to the considered problem of the ion-
ized gas flow in the boundary layer, instead of the physical coordinates x, y, new vari-
ables are introduced in the form of

1
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As with other already solved compressible fluid flow problems, a stream function y(s,
z) is introduced in accordance with the relations
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that are based on the continuity equation.

In transformations (5) and (6) and further on, the values py and py = pov, stand for the
known values of the density and dynamic viscosity of the ionized gas (air), while vg
represents the kinematical viscosity at a concrete point of the boundary layer. Here, p,,
and p,, denote the given distributions of these values on the wall of the body within the
fluid.

Applying the new variables (5) and the stream function (6), the governing equation
system (4), together with the boundary conditions, is transformed into the following
form:
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The nondimensional function Q that appears in the equation system (7), is defined
with the expression
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Prandtl number - Pr is determined with the known expression
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where A - coefficient of the heat conductivity and ¢, - specific heat of the ionized gas
(mixture).

In order to solve the fluid flow problems in the boundary layer by means of the Gen-
eral Similarity Method, it is necessary to obtain the corresponding momentum equation.
By the usual procedure, from the first two equations of the system (4) - by integration
transversally to the boundary layer (from the inner to the outer edge of the boundary
layer) and by transformation of the variables, this equation is easily obtained. With this
problem of the ionized gas flow, the momentum equation can take the three following
forms:
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where primes stand for the derivatives per the variable s.

This equation is by its form the same for all the considered cases of the compressible
fluid flow.

The usual values are introduced in order to obtain the momentum equation. They are:
parameter of the form f'(s), magnetic parameter g(s), conditional displacement thickness
A*, conditional momentum loss thickness A**, conditional thickness A*l, shear stress on
the wall of the body within the fluid t,, nondimensional friction function {(s) and
nondimensional values H and H;. With the ionized gas flow, these values are defined by
means of the relations:
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The characteristic function of the boundary layer F,,,, which is very important for the
numerical solution of the generalized equation system, with the flow problem under study
is:

F,,=2[C-(2+H)f]+2gH, -2A. (12)

Because of the porous wall of the body within the fluid, the porosity parameter A(s)
is introduced by means of the expression:

MO VWA** B VWA**

Als) = =7 (9); Vo (s) =", =7, (13)
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where the value V,(s) can be called conditional transversal velocity at the inner edge
of the boundary layer.

The equation system (7) contains new variables. This system with the corresponding
boundary conditions represents a mathematical model of this problem of the ionized gas
flow along the porous wall (where the electroconductivity is a function of the velocity
ratio). The boundary condition for the partial derivative (transversal velocity) is Oy/0s # 0
With the application of the General Similarity Method, it is important that this boundary
condition (underlined in (7)) should equal zero. Therefore, as with the incompressible
fluid [5], the stream function y(s, z) is divided into two parts. To be more correct, a new

stream function y*(s,z) is introduced in the form of the relation

v(s,2) =y, () +y'(s,2), v (5,0)=0 (14)

in which y(s, 0) = y,,(s) denotes the stream function along the wall of the body within the
fluid (z = 0).

After the application of the relation (14), the system (7) is transformed into the
following equation system:
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It can be noticed that both equations of the system (15) contain an additional (under-
lined) term on the left side of the equals sign. In these terms the derivative dv,, / ds, ap-
pears as a factor
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It can be also noticed that, for the case of a nonporous wall of the body within the
fluid (for which v,,=0) the underlined terms equal zero, which is quite logical, since
these terms are the result of the porous contour of the body. The boundary conditions are
the same as with the nonporous wall [10].

4. THE GENERALIZED IONIZED GAS BOUNDARY LAYER EQUATIONS

The obtained equation system (15) is analyzed in details in our investigation. The
ideas applied both with incompressible and compressible fluid are not useful if we want
to obtain the so-called generalized boundary layer equations [10] by means of the new
stream function of the form ®(s, 1), where 1 is a new variable. Therefore, to obtain the
generalized boundary layer equations of the considered ionized gas flow, it is necessary
to introduce new transformations in the form of the following expressions:
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In the defined similarity transformations, the following notation is used: n(s, z) -
newly introduced transversal variable, ® - newly introduced stream function, 4 - non-
dimensional enthalpy; while a and b are constants that will be discussed later.

With this flow problem, based on the expressions for the newly introduced variable
n(s, z), certain important values and characteristics of the boundary layer (11) can be
written in the form of the suitable relations. These relations are:
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Here, it is assumed that the already defined values A4, B and 4, are continual functions
of the variable s.

With the nondimensional functions ® and 7% , in the general similarity transforma-
tions (17), we introduced a local parameter of the ionized gas compressibility k = f;, a set
of parameters of the form f; of Loitsianskii type [5], a set of magnetic parameters g, and a
set of porosity parameters A; [10]. These sets are determined by the following expres-

sions:
2
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and, as it is known, they play a role of independent variables instead of the longitudinal
variable s.

For k=1 we will get fi(s)=u'.Z" - the already introduced parameter of the form (11).
The first in the set of the porosity parameters A;(s) = —(V,,/ M YZ "= (VA" Ivy) is the
same as the already defined parameter (13). Just like with incompressible fluid, the
parameters of the sets (19), satisfy the corresponding simple recurrent differential equations
of the form:
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Applying the similarity transformations (17) and (19) to the equation system (15) af-
ter some calculation, the so-called generalized boundary layer equation system of the
considered problem has been obtained. The obtained equation system, together with the

transformed boundary condition, is:
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Distribution of the outer velocity u,(s) appears neither in the equations of the obtained
system nor in the corresponding boundary conditions of the flow problem under study.
Therefore, the equation system (21) represents a general mathematical model for the case
of the ionized gas flow in the boundary layer along a porous wall of the body within the
fluid when the law on electroconductivity variation is given with the expression (3).
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It can be noticed that both of the equations of the system (21), on the left side of the
equals sign, contain one term that depends on the porosity parameter A; (13). Each of
them contains a sum of terms on the right side of the equals sign that are multiplied with
the function y; (20). If the wall of the body within the fluid is nonporous (v,, = 0), all the
porosity parameters equal zero. Then, all the mentioned terms in the system (21) equal
zero. In that case, the equation system, obtained in this paper, comes down to the
corresponding equation system for the case of the ionized gas flow along a nonporous
wall [10].

5. THE NUMERICAL SOLUTION OF THE OBTAINED EQUATION SYSTEM

As with other already solved flow problems, numerical solution of the obtained equa-
tion system (21) is possible only in the so-called # - parametric approximation. Assuming
that all the parameters equal zero, starting from the second one, i.e., if f; =0, g, =0 and
A;=0 when k> 2, the obtained equation system is considerably simplified. The system
(21) comes down to the system of partial differential equations with five independent
variables: M, «, f;, g1, A;; and it represents a four-parametric approxima-tion. In the
boundary layer theory, it is common [5, 9] to neglect the first derivatives per some of the
mentioned parameters, i.e., to perform the so-called localization. It is clear that in a de-
tailed analysis, with any flow problem, it is necessary to justify the localization per each
of the parameters. Here, the localization is justified due to difficulties of mathematical
nature. Therefore, the equation system for numerical solution in the four-parametric three
times localized approximation (0/0kx =0, 0/0g; =0, 0/0A;=0) together with the
corresponding boundary conditions has the following form:

0 (00 @B Qb (OO [ p. (00| _gop.(,_o0)ow
on o’ 2B’ 67]2 B2 p on B p on ) on
Ad®_F,f(o0 0’0 od o’

B o’ B* | om ongf  of o’

0 (Q aﬁ}r Q2B o oh  2xf p, acp+2KQ(azq>j2+

on\ Pr on 2B’ 87] B* p 0y o’ (22)
P _ _
g () 00)(00) A _Ff (000 o),
B° p on )L on B 8n B on of of oOm
q):aE:O, z:l_zw:canst. for n=0,

on

aﬁ—)l, 17—>17Q=1—K for mn—oow

on

Note that in the equations of the system (22), the index 1 is, for practical reasons, left
out from some (first) parameters. Both of the equations of the system (22) contain one
(underlined) term that characterizes the porous wall of the body within the fluid.
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Therefore, the equation system (22), obtained in this investigation, represents a gen-
eral mathematical model of the considered problem of the ionized gas flow, which is to
be solved numerically. For numerical integration of the obtained system of differential
partial equations of the third order, it is necessary first to decrease the order of the dy-
namic equation. By the usual transformation [9, 10]
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the order of the dynamic equation has been decreased, hence the corresponding equa-
tion system of this flow problem now is:
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A concrete numerical solution of the obtained system of nonlinear and conjugated
differential partial equations (24) is done by finite differences method, i.e., "passage
method” or TDA method. According to the well-known scheme [9] of the planar integra-

tion grid, derivatives of the functions ¢, ® and / are substituted with finite differences
ratios. This way the equation system (24) is transformed into the equivalent system of
algebraic equations that are:
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q)i,zm :(Pi,K+1 =0, Z{Jm =h, =const. for M= 1,

Oy =1 Z}/;/,Kn =1-x for M=N.

In the previous system the coefficient a'M k+1 of the dynamic equation (/) is determined
with the expression:
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During transformation into an algebraic equation, for each layer (K + 1) and at each
discrete point M of the planar integration grid, special attention was paid to the order of
calculation of certain functions and to linearization [9]. As with other flow problems, the
system (25) is solved by an iterative procedure, where i, j- stand for the number of itera-
tions. For the nondimensional function Q [10] and for the density ratio p, / p that appear
in the equations (24), approximate formulas are used in the forms of the following
expressions:

113 _
— h
Q=Q(h)=(rw) , Pl 26)

h p l-x

These expressions are more appropriate for the dissociated gas (air) flow, and in the
paper [3] they are determined based on the tables of the thermodynamic functions for the
air. Determination of more correct laws on distribution of these ionized gas values may
be the subject of some other investigation. For the numerical solution of the equation
system (24), i.e., of the corresponding algebraic system, a programme is written in FOR-
TRAN programming language. The basis of this program is the one used in the investiga-
tion [9]. A segment of this programme is presented in the Fig. 1. Since the objective of
this investigation is not to write a program, the notation used in the program is not given
here. All the calculations in this paper are done for the concrete values of the constants a
and b when a =0.4408; b =5.7140 that according to [9] represent the optimal values.
Prandtl number is taken to be constant — Pr=0.712. For the calculations of the
characteristic functions B and F,, at a zero iteration the values B?m =0.469 and
F S1p,1<+1 =0.4411 are accepted (as used in [9]).

Since the equation system (22), i.e., (24) is localized per compressibility, porosity
and magnetic parameter; all these parameters have the role of simple parameters. That is
why the equation system (24) is solved by the usual procedure [9], starting from the value
/=0.00 (flat plate), for the given values of the parameters «, g and A.

6. THE OBTAINED RESULTS AND CONCLUSIONS

In this investigation, the numerical solutions of the system (24) are obtained in the
form of tables defined by the written programme. Each of the tables represents the
solution of the equation system in the corresponding cross-section of the boundary layer
for the given values of the input parameters (k, g, A). This paper presents only some of
the most important results in the form of diagrams. Fig. 2 shows a diagram of
nondimensional velocity u / u,, Fig. 3 shows a diagram of nondimensional enthalpy # ,
while Figs. 4 and 5 give diagrams of the characteristic B of the boundary layer and
distribution of the nondimensional friction function {. A diagram of distribution of the
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nondimensional velocity (Fig. 6) and a diagram of nondimensional friction function
(Fig. 7) for different values of the porosity parameter A are also given. Based on the
given and other diagrams [10] the following important conclusions have been drawn:

e The general conclusion is that profiles of the obtained solutions of the boundary
layer equations of the considered ionized gas problem, according to their behav-
iour, are the same as with other problems of the compressible fluid flow [3].

e The nondimensional velocity u / u, in each of the cross-sections of the boundary
layer (different f) very quickly converges towards unity (Figs. 2 and 6).

e A significant influence of the magnetic parameter g on the characteristics of the
boundary layer 4, B, F,,, and C is noticed.

e The local compressibility parameter of the ionized gas k =f; does not have a
significant influence on the nondimensional friction function C.

e At low values, the porosity parameter A has a minor influence on profiles of the
nondimensional velocities u / u,, while at higher values this influence is significant
(Fig. 6).

e A change in compressibility parameter has a great influence on distribution of the
nondimensional enthalpy % in the boundary layer of the ionized gas.

e The porosity parameter A, however, has a greater influence on nondimensional
friction function ¢ (Fig. 7), as well as on the characteristic function F,,. Therefore,
the porosity parameter also has a significant influence on the boundary layer
separation point.

Once again, it is pointed out that, for calculation of the ionized gas boundary layer,
we have used the method based on the application of the Saljnikov's version [9] of the
General Similarity Method. This method is actually based on solution of the correspond-
ing generalized equation system of the considered flow problem. The solutions of the
obtained equations explain several general rules, some of which are stated above.

However, there are some difficulties in the application of the General Similarity
Method to the compressible fluid flow problems. These difficulties are usually of
mathematical nature.

The investigation of the dissociated gas flow in the boundary layer [3, 7], has showed
that the compressibility parameter has a great influence on distribution of the
nondimensional enthalpy at the cross-section of the boundary layer. It has been
determined that this parameter changes even the general characteristics of the behaviour
of this distribution. Therefore, it can be concluded that with the considered ionized gas
flow problem the corresponding equation system (21) should be solved without
localization per this parameter. Thus, we would obtain more correct results in terms of
quantity. This, however, means more mathematical, i.e., numerical difficulties.

Finally, let us point out, that determination of more correct laws on distribution of the
physical values Q and p./p (26) in the ionized gas boundary layer would be of great
interest in further studies. It is obvious that a solution of the ionized gas boundary layer
equations without localization per parameter g and especially per porosity parameter A
would mean a great contribution to the boundary layer theory.
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SOLUTION OF THE DYNAMIC EQUATION
COEFFICIENT OF THE DYNAMIC DIFFERENTIAL EQUATION

X=DELET/ (2.*BKI**2)

X1=X*DELET

X2=2.*X1

DO 20 M=2,K3

R1=FRSPI*F1R* (BRPI (M) -BPS (M) ) /DELFR+BRPTI (M) * (VA*BKI**2+
FIR* (2.-VB)) /2.

R1=R1*X+ (VFQR (M+1) -VFQR (M-1)) /4.

AKJIM=VFQR (M) -R1

AKJIM=AKJIM-VL1*DELET/ (2.*BKI)

CKJIM=VFQR (M) +R1

CKJIM=CKJIM+VL1*DELET/ (2.*BKI)

R2=F1R*ARPI (M) * (1.+FRSPI/DELFR) + (G1*CRPI (M) / (1.-F0))* (1.-ARPI (M))

BKJIM=VFQR (M) +X1*R2
R3=F1R*CRPI (M)/ (1.-F0) +FRSPI*F1R*ARPI (M) *APS (M) /DELFR
GKJIIM=-X2*R3

PASSAGE COEFFICIENTS

APVIM=2.*BKJIM-AKJIM*EKP (M-1)
F33=DABS (APVIM)

IF(F33-EPS3)8,7,7

APVIM=EPS3

CONTINUE

DKP (M) = (AKJIM*DKP (M-1) -GKJIM) /APVIM
EKP (M) =CKJIM/APVIM

SOLUTIONS OF THE DYNAMIC EQUATION BY THE PASSAGE METHOD

M=N-1

ARRI (M) =DKP (M) +EKP (M) *ARRI (M+1)
M=M-1

IF(M-2) 31,30,30

DELAM=0.

N1=N-1

DO 45 M=2,N1
DELA=DABS (ARRI (M) -ARPI (M) )
IF (DELAM-DELA) 44,45,45
DELAM=DELA

CONTINUE

NUMERICAL DETERMINATION OF THE FUNCTION FI

BRRI (2)=3.*DELET/8.* (ARRI (1) +3.*ARRI (2) +3.*ARRI (3) +ARRI (4))
BRRI (2) =BRRI (2) -DELET/3.* (ARRI (2) +4.*ARRI (3) +ARRI (4) )

BRRI (2)=BRRI (2) +BRRI (1)

N2=N-2

DO 50 M=1,N2

BRRI (M+2)=DELET/3.* (ARRI (M) +4.*ARRI (M+1) +ARRI (M+2) ) +BRRI (M)
CONTINUE

DELBM=0.

DO 55 M=2,N

DELB=DABS (BRRI (M) -BRPI (M) )

IF (DELBM-DELB) 59,55,55

DELBM=DELB

CONTINUE

Fig. 1. A segment of the written programme in FORTRAN
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GRANI(;NI SLOJ JONIZOVANOG GASA NA POROZNOM ZIDU
TELA CIJA JE ELEKTROPROVODNOST FUNKCIJA ODNOSA
BRZINA

Branko R. Obrovi¢, Slobodan R. Savi¢

U radu se istrazuje ravansko strujanje jonizovanog gasa (vazduha) u granicnom sloju u
uslovima tzv. ravnotezne jonizacije. Kontura opstrujavanog tela je porozna. Jonizovani gas se
kre¢e u magnetnom polju jacine B, = B,, (x). Pri tome se pretpostavlja da je elektroprovodnost
Jjonizovanog gasa funkcija odnosa poduzne i brzine na spoljasnjoj granici granicnog sloja. Polazne
Jjednacine granicnog sloja su primenom Metode uopstene slicnosti dovedene na uopsteni oblik.
Dobijeni uopsteni sistem jednacina granicnog sloja, pored poprecne koordinate v, sadrzi i tri
skupa parametara. Kako je to uobicajeno u ovoj teoriji ove jednacine numericki su reSene u
Cetvoroparametarskom tri puta lokalizovanom priblizenju. Na bazi numerickih resenja izvedeni su
zakljucci o ponasanju pojedinih fizickih velicina i karakteristika granicnog sloja razmatranog
problema strujanja stisljivog fluida. Date su i smernice za dalja moguéa istrazivanja ovog
problema strujanja fluida.

Kljuéne re¢i:  Granicni sloj, jonizovani gas, ravnotezna jonizacija, elektroprovodnost jonizovanog
gasa, porozna kontura, metoda uopStene slicnosti, parametar poroznosti



