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Abstract. A new BEM based variational method is presented for post-buckling 
analysis of thin elastic plates of arbitrary shape under general boundary conditions. 
The response of the plate is described by three coupled nonlinear partial differential 
equations in terms of displacements, which are derived on the base of the von Kármán 
assumption. The solution is achieved using the AEM. The numerical examples 
demonstrate the efficiency and validate the accuracy of the developed method. 
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1. INTRODUCTION  

The post-buckling response of thin elastic plates is very important in engineering analysis. The 
reason is that thin plates after buckling are still capable of carrying a much increased load without 
failure provided that the stress is in the elastic range. Therefore, it is essential to consider the post-
buckling behavior of the plate in order to benefit from this additional strength. The precice analysis 
of the post-buckling response proves to be quite difficult, because the governing equations are 
nonlinear. For this reason very few analytical or approximate solutions are available in the litera-
ture [1,2]. The BEM has been developed for large deflection analysis of plates based on the von 
Kármán plate theory [3,4], in which the Berger’s assumption was used to simplify the nonlinear 
equations.  

In this paper a new BEM solution is presented for post-buckling analysis of plates using 
the AEM. According to this method the original equations are converted into a linear plate 
(biharmonic) equation for the transverse deflection and two linear membrane equations for 
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the inplane deformation under fictitious loads and subjected to the same boundary condi-
tions. The fictitious loads are approximated with radial basis function series of multiquadric 
(MQ) type. The integral representation of the solution of the substitute problems yields ad-
missible shape functions, which are global and satisfy both essential and natural boundary 
conditions. Using these shape functions the solution of the original problem is represented 
by a Ritz expansion. The minimization of the total potential yields the Ritz coefficients and 
permits the evaluation of optimal values for the shape parameters of the MQs and the opti-
mal position of the interior collocation points, minimizing thus the error. Since the arising 
domain integrals are converted into boundary line integrals, the method is boundary-only. 
First the linear buckling problem is solved and the resulting eigenmodes are employed to 
establish the small initial transverse load that excites possible deformation patterns. Subse-
quently, the post-critical response is studied by gradually increase the inplane loads. Several 
examples are studied which demonstrate the efficiency and validate the accuracy of the de-
veloped method and also give a better insight to this difficult engineering problem.  

2. GOVERNING EQUATIONS 

2.1 The Nonlinear plate problem 

Consider a thin elastic plate of uniform thickness h occupying the two dimensional multiply 

connected domain Ω  of the xy plane with boundary 0
K
i i=Γ ∪ Γ , which may be piece-wise 

smooth. The plate is subjected to transverse loading ( , )f x y . The boundary may be elastically 
supported with transverse and rotational restraint stiffness Tk and Rk  respectively. The von 
Kármán assumptions for kinematic relations are adopted. That is  

 21, ,
2x x xu wε = +       21, ,

2y y yv wε = +     , , , ,xy y x x yu v w wγ = + +  (1a,bc) 

where u, v are the membrane and w the transverse displacements. The plate undergoes bending 
combined with inplane deformation which is described by the following boundary value problems. 
(i) Transverse deflection 
 4 ( , 2 , , ) , ,x xx xy xy y yy x x y yD w N w N w N w b w b w f∇ − + + + + =       in Ω  (2) 

 , ,n n t t T nVw N w N w k w V∗ ∗ ∗+ + + =  orw w∗= , , or , ,n n n nR
Mw k w M w w∗ ∗− = =  on Γ  (3a,b) 

 a b( ) ( ) ( ) *   or   k k k
T k kkk w Tw R w w∗− = =        at corner point k (3c) 

(ii) Inplane deformation 
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Fig. 1. Plate geometry and supports (c=clamped, ss=simply supported, f=free) 

where 3 2/12(1 )D Eh ν= −  is the flexural rigidity of the plate and /2(1 )G E ν= +  the 
shear modulus.Vw  is the equivalent shear force, Mw  is the normal bending moment and 
Tw  the twisting moment on the boundary. a bkTw  is the discontinuity jump of the 
twisting moment at the corner. Moreover, the quantities , ,x y xyN N N  represent the inplane 
stress resultants. The total potential is given as 
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 (6) 

where 2/(1 )C Eh ν= −  is the membrane stiffness of the plate. The condition 0δΠ =  yields 
the boundary value problem (2)-(5). The plate problem is linearized if the stretching of the middle 
surface due to bending is neglected, that is if it is set 2 2, , , 0x y x yw w w w= = =  in Eqs (1). In this 
case the two problems are uncoupled. For linear buckling due to edge loading it is 

0x yf b b= = =  and the eigenvalue problem is derived as 

 4 ( , 2 , , ) 0x xx xy xy y yyD w N w N w N wλ∇ − + + =       in Ω  (7) 

 ( ), , 0n n t t TVw N w N w k wλ ∗ ∗+ + + = or 0w = , , 0R nMw k w− =   or , 0nw =  on Γ (8a,b) 

 a b( ) ( ) ( )0   or   0k k k
T kk w Tw w− = =   at corner point k (8c) 

where λ  is the load parameter. The forces , ,x xy yN N N  are established by solving independently 
the boundary value problem (4a,b), (5a,b) using the BEM [5]. 

3.1 The AEM solution for the plate equation 

The boundary value problem (2)-(5) is solved using the AEM [4]. The analog equation 
for the problem at hand is  
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 4 ( )w b∇ = x  (9) 

where ( )b x  represents the fictitious load. Equation (9) under the boundary conditions (3) is solved 
using the BEM. Thus, the solution is obtained in integral form as 

a b a b( )( ) ( , , )n n k
k

w vbd vVw w Mv v Mw wVv ds v Tw w Tv
Ω Γ

= Ω+ + − − − −∑∫ ∫x  ∈ Ωx  (10) 

which yields the following two boundary integral equations for points where the boundary is 
smooth 

a b a b( )1 ( ) ( , , )
2 n n k

k

w vbd vVw w Mv v Mw wVv ds v Tw w Tv
Ω Γ

= Ω+ + − − − −∑∫ ∫x  ∈ Γx (11) 

a b a b( )1 1 1 1 1 1 1
1 , ( ) ( , , )
2 n n k

k

w v bd vVw w Mv v Mw wVv ds v Tw w Tvν Ω Γ
= Ω+ + − − − −∑∫ ∫x ∈ Γx (12) 

2( , ) ln / 8v v r r π= =x y  is the fundamental solution and 1v  its normal derivative at point 
∈ Γx . Eqs (11) and (12) can be used to establish the not specified boundary quantities. They are 

solved numerically using the BEM. The boundary integrals are approximated using constant 
boundary elements, whereas the domain integrals are evaluated as follows. The fictitious load 
( )b x  is approximated by the series [5] 

 
1

( ) ( )
M

k k
k

b f rα
=

=∑x ,   kr = −x x  (13) 

where ( )kf r  are radial basis functions with kx  being M  collocation points inside Ω  and ka  
coefficients to be determined. Thus we can write 
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vbd a vf r d
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Ω = Ω∑∫ ∫  (14) 

In order that the method maintains its pure boundary character, the domain integral in Eq. (14) is 
converted to boundary line integral using the Raleigh-Green identity [6]. Similar expressions are 
obtained for the domain integrals including 1( , )v x y . The boundary integral Eqs (11) and (12) 
together with the boundary conditions (3) are used to evaluate the boundary quantities. Applying 
them to the boundary nodal points we obtain 
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 (15a,b) 

where H , G , A , 1 2 3, , ,b…α α are known coefficient matrices; w , ,nw  are the vectors of the 
boundary nodal displacements and boundary nodal slopes, respectively; V , M  are the vectors of 
boundary nodal effective shear forces and boundary nodal normal bending moments and a  is the 
vector of the unknown coefficients defined in Eq. (13). Equations (15) can be combined to express 
the boundary quantities nw, w, , V , M  in terms of the coefficients a , and subsequently use 
these expressions to eliminate the boundary quantities from the discretized counterpart of Eq. (10). 
Thus we obtain the following representation for the deflection 

 0
1

( ) ( ) ( )
M

k k
k

w aW W
=

= +∑x x x        ∈ Ωx  (16) 

Apparently, the functions defined in Eq. (16) satisfy not only the kinematic boundary 
conditions but also the natural ones. The derivatives of ( )w x  at points x  inside Ω  are 
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obtained by direct differentiation of Eq. (10)  

 
0

1

, ( ) , ( ) , ( )
M

pqr k k pqr pqr
k

w aW W
=

= +∑x x x ,      , , 0, ,p q r x y=       ∈ Ωx  (17) 

Note that the above notation implies 000,w w= , 0 0, ,y yw w= , etc. 

3.2 The AEM solution for plane stress problem 

The analog equations of Eqs (4) are obtained using the Laplace operator, which yields 
 2

1( )u b∇ = x                      2
2( )v b∇ = x  (18a,b) 

The integral representation of the solution of Eq. (18a) is 

 * *
1( ) ( )u v b d v q q u dsε ∗

Ω Γ
= Ω− −∫ ∫x     ∈ Ω∪ Γx  (19) 

in which ,nq u= ; * / 2v nr π= A  is the fundamental solution to Eq. (18a) and ,nq v∗ ∗=  its 
derivative normal to the boundary with r = −y x  ∈ Ω∪ Γx  and ∈ Γy ; ε  is a constant 
( 1ε =  if ∈ Ωx , 1/2ε =  if ∈ Γx  and 0ε =  if ∉ Ω∪ Γx ). The domain integral in 
Eq. (19) is approximated by the series (13). Subsequently, using the BEM and the previous proce-
dure we obtain  

(1)
0

1

, ( ) , ( ) , ( )
M

pq k k pq pq
k

u a U U
=

= +∑x x x
,

(2)
0

1

, ( ) , ( ) , ( )
M

pq k k pq pq
k

v a V V
=

= +∑x x x
, 0, ,p q x y=  ∈ Ωx (20) 

The functions ( ), ( )k kU Vx x , 0,1,..,k M=  are admissible shape functions satisfying both the 
kinematic and the natural boundary conditions. Once the 3M  unknown coefficients (1) (2), ,k k ka a a  
are established the solution of the problem is given by Eqs (10) and (20). 

3.3 The minimization of the total potential 

The herein employed radial basis functions kf  are the multiquadrics (MQs), which are 
defined as 2 2

k kf r c= + , where kc  are the shape parameters, in general different for each 
collocation point. It is apparent that the functional Π  depends on the 3M  coefficients 

(1) (2), ,k k ka a a , the shape parameters kc  of MQs and the 2M  coordinates ,k kx y  of the 
collocation points. Therefore, we can search for the minimum using various levels of optimi-
zation. On the base of the previously described procedure a FORTRAN code has been writ-
ten for post-buckling analysis of plates. The square plate of Fig. a with 2kN/m73 10E = × , 

0.3ν = , 0.1h m=  has been analyzed. All edges are simply supported and movable in the 
plane of the plate. Fig. a shows the load-deflection curves at the center of the plate, when the 
initial deflection has the form of the first linear buckling mode as compared with the exact 
solution [1]. Moreover, Fig. b shows the load deflection curve at point (2.5, 1), when the 
initial deflection has the form of the first, second and third linear buckling mode shape. It 
was observed that the post-buckling response is triggered when the load reaches the value of 
the critical load of the corresponding mode shape ( 1 4333.3crP kN= , 2 6771.70crP kN= , 

3 12038.6crP kN= ). 
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4. CONCLUSIONS 
A BEM based variational method for post-buckling analysis of plates of arbritrary shape 

was presented. The global admissible functions are established using a BEM technique based 
on the concept of the analog equation. The post-buckling can start from higher critical load, if 
the initial deflection has the shape of the respective linear buckling mode. Thus, since the post-
buckling response of thin plates is a stable state, we can conclude that the bearing capacity of 
the plate can be increased by specifying appropriately the shape of the initial deflection. 
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ANALIZA NAPREGNUTIH PLOČA  
METODOM GRANIČNIH ELEMENATA  

John T. Katsikadelis, Nick Babouskos 

Nova metoda graničnih elemanata  zasnovana na varijacionoj metodi je predstavljena u primeni na 
analizu stanja savije netanke elastične  ploče proizvoljnog oblika za slučaj opštih graničnih uslova. Odziv 
ploče je opisan pomoću tri spregnute parcijalne nelinearne diferencijalne jednačine izražene pomoću 
pomeranja, pri čemu su korišćene von Kármán-ove pretpostavke. Rešenja su dobijena korišćenjem AEM. 
Numeričkim primerom je prikazana efektivnost primene i kvalitet tačnosti razvijene metode.  

Ključne reči:  metoda graničnih elemenata, ploče, analog jednačine, nelinearni, varijacioni, 
optimalni, multikvadratni.  


