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Abstract. We consider the Hill’s equation with periodic function y″ + [λ − q(x)]y = 0, 
q(x + π) = q(x) and investigate a periodic boundary value problem with only a finite 
number of simple eigenvalues. 
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1. INTRODUCTION  

We consider the Hill’s equation with periodic function 

 [ ( )] 0, ( ) ( )y q x y q x q x′′ + λ − = + π =  (1) 

By y1 and y2 we denote the solutions of (1) which satisfy 

 1 2 1 2(0) (0) 1 (0) (0) 0y y y y′ ′= = = = . 

The discriminant of (1) is given by 1 2( ) ( ) ( )y y′∆ λ = π + π  and λ0, λ1, λ2,..., the zeros of 
2 − ∆(λ), are the eigenvalues of (1) subject to the boundary conditions y(0) = y(π) and 
y′(0) = y′(π) while the zeros of 2 + ∆(λ), 0 1 2, , ,...′ ′ ′λ λ λ , are the eigenvalues of (1) subject to 
the boundary conditions y(0) = −y(π) and y′(0) = −y′(π).We shall assume that q ∈ Cn in 
this article, for suitable n. We also assume, without the loss of generality ∫0

π 
q(x)dx = 0.For 

further background information see [2, 3, 5]. 
 Since q is a π-periodic function with mean value zero 

 
1

( ) [ cos 2 sin 2 ]n n
n

q x a nx b nx
∞

=

= +∑ . 

We denote the even and odd harmonic parts of q by qe and I′, respectively, and let 
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where ( / 2) ( )I x I x+ π = −  so that 
 ( ) ( ) ( )eq x q x I x′= + .  (2) 

MAIN RESULT 

We use the theorems proved by Borg, Hochstadt [6] and Goldberg and Hochstadt [4]. 
The purpose of this paper is to generalize this above results by proving the following 
theorem: 

Theorem Let q ∈ Cn. If all but 2n + 1 zeros of 2 − ∆(λ) (namely, λ0, µ1, µ2,...,µ2n) are 
double zeros ,then 

 1
0

0
n

n k k
k

R C R+
=

+ =∑  , (3) 

where the Rk(k = 0, 1,...,n) satisfy R0 = 1, 

 1 0

1 1 1
4 2 2

x
k k e k e k k kR R q R q R I I R d r I+′ ′′′ ′ ′ ′ ′ ′= − + + − τ +∫ , (4) 

rk constant, and where the constants C0, C1,...,Cn depend on λ0, µ1, µ2,...,µ2n. 
The constant rk will be identified in proof. Theorem generalizes the previous results to 

any finite number of simple eigenvalues and separate the nonvanishing of instability in-
tervals of (1) into two categories corresponding to the zeroes of 2 + ∆(λ) and zeroes of 
2 − ∆(λ). 

Proof: By u1 and u2 denote the solutions of 

 [ ( )] 0u q x u′′ + λ − + τ =  

which satisfy 1 2(0, ) (0, ) 1u u′τ = τ =  and 1 2(0, ) (0, ) 0u u′ τ = τ = . Solutions u1 and u2 are 
related to y1 and y2 by means of 

 1 2 1 1 2( , ) ( ) ( ) ( ) ( )u x y y x y y x′ ′τ = τ + τ − τ + τ   (5) 

 2 1 2 2 1( , ) ( ) ( ) ( ) ( )u x y y x y y xτ = τ + τ − τ + τ   (6) 

First we proved that u1(x, τ) and u2(x, τ) are π-periodic functions of τ. 
Since q(x + π) is π-periodic replacement of τ by τ + π in the above differential equa-

tion left in invariant. Therefore if u(x, τ) is a solution so is u(x, τ + π). Than 

 1 1 2( , ) ( , ) ( , )u x au x bu xτ + π = τ + τ . 

From the initial conditions it follows that a = 1, b = 0 so that u1(x, τ + π) = u1(x, τ). A 
similar argument applies to u2(x, τ). 

Differentiating (6) with respect to τ three times we obtain with the aid of (1), (2) and (5) 
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3
2

2 23

2 1

( / 2, ) 2 ( ) ( / 2, ) 4[ ( ) ] ( / 2, )

2 ( )[ ( / 2, ) ( / 2, )]

e e
uu q u q

I u u

∂∂ ′π τ = τ π τ + τ − λ π τ +
∂τ∂τ

′ ′+ τ π τ + π τ
 (7) 

Also, it is easy to verify that 

 1 2 2[ ( / 2, ) ( / 2, )] 2 ( ) ( / 2, )u u I u∂ ′ ′π τ + π τ = − τ π τ
∂τ

. 

Each side of the above is a periodic function. It follows that 1 2( / 2, ) ( / 2, )u u′π τ + π τ =  

2 1 20

1( ) ( / 2, ) [ ( / 2, ) ( / 2, )]I u d u u d
π

′ ′− τ π τ τ + π τ + π τ τ
π∫ ∫ . Here the term ∫I′(τ)u2(π/2, τ)dτ 

denotes simply the term by term indefinite integral of a Fourier series. This notation will 
be retained in the rest of this article. 

Equation (7) can now be rewritten as 

 

3

2 2 23

2 1 20

( / 2, ) 2 ( ) ( / 2, ) 4[ ( ) ] ( / 2, )

24 ( ) ( ) ( / 2, ) ( ) [ ( / 2, ) ( / 2, )]

e eu q u q u

I I u d I u u d
π

∂ ∂′π τ = τ π τ + τ − λ × π τ −
∂τ∂τ

′ ′ ′ ′− τ τ π τ τ + τ π τ + π τ τ
π∫ ∫

  (8) 

By the use of standard asymptotic results [5] one finds that 

 2
0 1

( , ) ( , )sin( , ) cosk k
k k

k k

R x T xxu x x
∞ ∞

= =

τ τλ
τ = + λ

λ λλ
∑ ∑  (9) 

 1 20
0 0

1 sin / 2[ ( / 2, ) ( / 2, )] cos
2

k k
k k

k k

r t
u u d

∞ ∞π

= =

λπ π′π τ + π τ τ = + λ
π λ λλ

∑ ∑∫  (10) 

The substitution of (9) and (10) into (8) and a comparison of corresponding terms in 
the asymptotic expansions yields 

 ' ''' ' '
1

1 1 1( ) ( ) , 0
4 2 2n n e n e n n nR R q R q R I I x R x dx r I n+ + + + + +

+ ′ ′ ′ ′= − + + − + ≥∫   (11) 

 ' ''' '
1

1 1 1( ) ( ) , 1
4 2 2n n e n e n n nT T q T q T I I x T x dx t I n+ + + + + +

+ ′ ′ ′ ′= − + + − + ≥∫  (12) 

where 
 0 1( ) ( / 2, ), ( ) ( / 2, ), 1,k k k kR R T T R T I+ + + +τ = π τ τ = π τ = = . (13) 

Similarly (8) also holds at x = − π/2 so that a substitution of (9) and (10) into (8) leads 
to (11) and (12) with , ,k k kR T r+ + +  and kt

+ replaced by , ,k k kR T r− − −  and kt
− , respectively, were 

 0 1( ) ( / 2, ), ( ) ( / 2, ), 1,k k k kR R T T R T I− − − −τ = −π τ τ = −π τ = =  (14) 

We now define 
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 2 ( ) ( ) ( ), 2 ,k k k k k kR R R r r r+ − + −τ = τ + τ = +  

 2 ( ) ( ) ( ), 2 ,k k k k k kT T T t t t+ − + −τ = τ + τ = +  

 * *2 ( ) ( ) ( ), 2 ,k k k k k kR R R r r r+ − + −τ = τ − τ = −  

 * *2 ( ) ( ) ( ), 2 ,k k k k k kT T T t t t+ − + −τ = τ − τ = −  (15) 

and notice that * *( , ), ( , ), ( , )k k k k k kR r R r T t  and * *( , )k kT t  all satisfy (4) 

 1
1 1 1( ) ( ) , 0
4 2 2k k e k e k k kR R q R q R I I x R x dx r I k+′ ′′′ ′ ′ ′ ′ ′= − + + − + ≥∫ . 

In particular 

 2
0 1

1( ) 1, ( ) [ ]
2 eR x R x q I= = −  

 
/ 2

2 2 4 2
2

0

1 1( ) [ 3 2( ) 2 2 ( ) ( ) 2 ]
8 3

x

e e e eR x q q I II I I I q d q I
+π

′′ ′ ′′ ′= − − − − − − τ τ τ +∫  (15a) 

and 
 1( ) ( )T x I x=  

 
/ 23

2 0

1 1 1 1( ) ( ) ( )
4 6 2 4

x
e eT x I I q I q I d

+π
′′ ′= − − + − τ τ τ∫ . (15b) 

Let g(x, ε) be Green’s function satisfying 

 [ ( )] ( ), 0 1g q x g x′′ + λ − + τ = δ − ε ≤ ε ≤ , (16) 

and the boundary conditions g(0, ε) = g(π, ε), g′(0, ε) = g′(π, ε). A standard calculation 
[6] shows that 

 2 2( ) ( ,0) ( ( , ) ( , )) (2 ( ))g x g x u x u x≡ = τ − − π τ − ∆ λ .  (17) 

It is known [2] that ∆(λ) is an entire function of λ of order 1/2 and has the following 
asymptotic representation for real λ [5]: 

 
1 1

sin( ) 2cos 2cos k k
k k

k k

w v∞ ∞

= =

λπ
∆ λ = λπ + λπ +

λ λλ
∑ ∑  (18) 

so that 
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=
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λπ λπ
−

λλ

∑

∑
 (19) 

From the hypotheses of Theorem we also know that the only simple zeros of 2 − ∆(λ) 
are λ0, µ1,...,µ2n, and all others must be double zeros so that 
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 2
0 1 22 ( ) ( )( ) ( ) ( )n f− ∆ λ = λ − λ λ − µ λ − µ λ…  (20) 

From (17), (9), (15), (20) we have 
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so that 
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 (21) 

Now the Green’s function g(x), as a function of λ must be a meromorphic function. 
But the boundary value problem (1) is selfadjoint from which it follows that g(x) can have 
only simply poles. We conclude therefore that each of (21) must be an entire function. 
The denominator f(λ) in (21) can also be written as (see (20)) 

 
1

2

0 1 2

2 ( )( )
( )( ) ( )n

f
⎡ ⎤− ∆ λ

λ = ⎢ ⎥λ − λ λ − µ λ − µ⎣ ⎦…
 (22) 

and by use of (19) we see that 

 1 2( ) 2sin( 2) nf +λ ≈ λ π λ λ → ∞  (23) 

It follows that the right side of (21) is O(λn), so that by Liouville’s theorem it must be 
a polynomial in λ, of degree n, say Pn(λ).Than, using (21),(19) and (20) 
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 (24) 

By squaring the above and comparing corresponding terms in the asymptotic series we 
obtain 
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We note that all the terms under the radical are independent of τ and depend only on 
λ0, µ1,...,µ2n. One can now rewrite (25) as 
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= = =
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=
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From (26) we see incidentally that G0 = 1, A0(τ) = 1.From the coefficient of λ−n−1 we 
see that 
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or equivalently 
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=

+ =∑  

if we let Ck = Gn+1−k, thereby establishing Theorem. 
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O PERIODIČNOM GRANIČNOM PROBLEMU  

Julka Kneževic-Miljanovic 

Razmatramo Hilovu jednačinu sa perodičnom funkcijom y″ + [λ − q(x)]y = 0, q(x + π) = q(x) i 
ispitujemo periodični granični problem samo sa konačnim brojem sopstvenih vrednosti.  

Ključne reči: obične diferencijalne jednačine, periodični granični problem, sopstvene vrednosti 

 


