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Abstract. If the structure is moving then it is possible to reduce the dynamic problem 
to a static one by applying D'Alembert's principle of dynamic equilibrium in which an 
inertia force equal to the product of the mass and the acceleration is assumed to act on 
the structure in the direction of negative acceleration. For free vibration, the the 
system is vibrating in a normal mode, and it is possible to transform equilibrium 
equation into a standard eigenvalue problem. Various schemes have been developed 
for solving eigenvalue equations such as the one by Bishop et al. [2]. In this paper the 
finite strip method is used in the analysis of natural frequencies and the mode shapes of 
rectangular bending bridge plates.The  point of our analysis was to calculate the 
lowest natural frequencies of different types of ribbed reinforced plates, so that we 
could compare them and determine which one of them is optimal. Optimal means that 
the plate has the  lowest natural frequency for the given lenght. 
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1.THE FINITE STRIP DISPLACEMENT FUNCTIONS IN THE PROBLEM OF BENDING 

The analysis of the transverse vibration of thin plates is usually performed using 
Kichhoff's presuppositions for plate strain. Let us observe the problem of bending of a 
finite strip presented in Fig. 1. The approximative function must satisfy the partial 
differential equation of the 4th order 

 ( , ) 0.w x y∆∆ =  (1) 

If both ends simply supported, the function of deflection will be presented in the form 
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where m represents series term, or number of the harmonic. For any single series the term 
we can anticipate the following polynome to represent the displacement amplitude w(x): 

 2 3
1 2 3 4( ) ,w x C C x C x C x= + + +  (3) 

where C1−C4 represent generalized displacements. This approximation enables the estab-
lishment of the compatibility of displacement w and first derivates dw/dx in the nodal 
lines of the discretizated structure presented in Fig. 1. 

Using the condition: ϕ = dw/dx, after writing the polynome (3) for the nodal lines 1 
and 2 with the coordinates x = 0 and x = b respectively, we obtain 
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By the inversion of (4) we obtain the polynome coefficients 

 

01

02

2 2
3

4
3 2 3 2

1 0 0 0
0 1 0 0
3 2 3 1

2 1 2 1
b

b

wC
C

wC b b b b
C

b b b b

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ϕ⎢ ⎥ ⎢ ⎥⎢ ⎥ = − − −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

ϕ⎢ ⎥⎣ ⎦ ⎣ ⎦−⎢ ⎥⎣ ⎦

.   (5) 

 
Fig. 1. Structure discretizated into a mesh of finite strips 

The displacement amplitude w(x) is now: 
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The final form of the part of the approximative function in the direction y for different 
conditions on the ends is: 

a) both ends simply supported  

 ( ) sin( / ),m mY y y a= µ ⋅    , 2 ,...., .m mµ = π π π  (7) 

b) both ends clamped  

 
[ ]( ) sin( / ) sinh( / ) cos( / ) cosh( / ) ,

sin( ) sinh( ) (2 1), 4.7300,7.8532,....., .
cos( ) cosh( ) 2

m m m m m m

m m
m m

m m

Y y y a y a y a y a

m

= µ ⋅ − µ ⋅ − α ⋅ µ ⋅ − µ ⋅

µ − µ + ⋅ π
α = µ =

µ − µ

    (8) 

c) one end clamped, the other free  
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d) one end simply supported, the other clamped      

 ( ) sin( / ) sinh( / ),m m m mY y y a y a= µ ⋅ − α ⋅ µ ⋅  
sin( ) (4 1), 3.9266,7.0685,....., .

sinh( ) 4
m

m m
m

mµ + ⋅π
α = µ =

µ
    (10) 

Being the mode shapes of vibration, these function satisfies the conditions of 
orthogonality: 
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2. PROBLEM OF FREE VIBRATION 

The linear system of diferential equations of motion of one finite strip is: 

 ˆ ,Mq Cq Kq Q+ + =   (12) 

where M is the mass matrix, C is the damping matrix, K̂ is the stiffness matrix and Q is 
the vector of generated forces of one finite strip, while q, q and q  represent the vectors 
of the generated displacements, velocities and accelerations respectively. If the external 
forces Q in equation (12) are equal to zero, the problem reduces to free vibration. There 
are two different cases: the free vibration with damping and the free vibration without 
damping. The second case is more simple, and it is described by the following 
homogeneous system of differential equations of motion 
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 ˆ 0.Mq Kq+ =  (13) 

In the analysis of the free vibration it is presupposed that all displacements alter in 
time according to the law of harmonic function, so that we shall introduce the expression: 

 ( ) ,i tq t qe ω=  i te cos t i sin t.ω ω ω= +   (14) 

The matrix equation (13) is now  

 2ˆ( ) 0K M q− ω = . (15) 

This is characteristic-value problem, so that eigenvalues and eigen vectors are ob-
tained as results. 

The various schemes have been developed for solving eigenvalue equations such as 
the one by Bishop et al. [2]. For more advanced techniques the mass condensation method 
[4], the subspace iteration method [1] and Lanczos method [3] should be used.  

Note that a direct solution Eq. 15 is uneconomical because although both 1ˆ[ ]K −  

and [M] are symmetrical, the product 1ˆ[ ] [ ]K M− , however, is in general not symmetrical, 
and in practice some form of transformation similar to the process described in Chapter 6 
of Reference [5] should be applied first. 

For more detailed discussions on structural dynamics, readers should refer to other 
text such as the one by Cheung and Leung [3].  

3. CONSISTENT MASS MATRIX AND STIFFNESS MATRIX OF FINITE STRIP 

If we apply the same approximative function as those used for approximation of the 
strip displacement field to the calculation of the matrix M, we obtain the consistent mass 
matrix of the strip. For linear problem it is possible to study the problems of bending and 
plane stress separately. 

Here we shall discuss the finite strip which have two degrees of freedom per nodal 
line in bending, and the approximative functions of displacement field: 

 1 2 3 4[ ],wm wmA Y N N N N=     (16) 

that is, they are defined separately, 
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The separate elements of the consistent mass matrix are obtained according to the 
expression 

 ,T
wwmn wm wn

A

M t A A dA= ρ ∫   , 1, 2,..., .m n r=     (19) 

The functions Ywm, which are selected for finite strips with different boundary condi-
tions, satisfy the conditions of orthogonality, so that the mass matrices Mwwmm for m ≠ n 
are equal to zero. We have only 

 .T
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A
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Series terms can be separated, and the whole procedure can be carried out for each 
term separately. Naturally, in this case the elements in the stiffness matrix must also be 
separated. 

Using (16), we have 
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where I21 is integral defined with  
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After multiplication and integration of the functions we shall have 
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The functions Ywm select one of the four types of finite strips, in dependence on the 
support conditions on ends. 

If we present the stiffness matrix ˆ
wwmmK  in the function Ywm and its derivates, we shall 

have: 

 3 22 3
ˆ ,T

wwmn w m w n
A

K B D B dA= ∫  

 

22 22
1

22 22
22 1

22

0
0 ,

0 0

x

y

xy

D D
D D D

D

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 



102  D. MILAŠINOVIĆ, R. CVIJIĆ, A. BORKOVIĆ 

 
, ,

3 3 , ,

, , ,

,
2

w xx w xx wn

w n wn w yy w w yyn

w xy w x w yn

A N Y
B L A A N Y

A N Y

⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥

= = − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

  (23) 

 

22
, ,

22
, 1 ,

22
, 1

22
, ,

22
, , , ,

ˆ ,

4

T
w xx wm x w xx wn
T
w w yym w xx wn

T
wwmn w xx wm w wn

A T
w w yym y w w yyn

T
w x w ym xy w x w yn

N Y D N Y
N Y D N Y

K dAN Y D N Y
N Y D N Y
N Y D N Y

⎡ ⎤+
⎢ ⎥

+⎢ ⎥
⎢ ⎥= +
⎢ ⎥

+⎢ ⎥
⎢ ⎥
⎣ ⎦

∫  

where: 

 21
0

,
a

wm wnI Y Y dy= ∫  

 22 ,
0

,
a

w yym wnI Y Y dy= ∫  

 23 ,
0

,
a

wm w yynI Y Y dy= ∫     (24) 

 24 , ,
0

,
a

w yym w yynI Y Y dy= ∫  

 25 , ,
0

.
a

w ym w ynI Y Y dy= ∫  

For the finite strip with simply supported ends from the orthogonality conditions (11) 
integrals I21 and I24 are equal to zero for m ≠ n. Apart from that, for the function (7) the 
remaining integrals in (24) are also equal to zero for m ≠ n. For this reason, all stiffness 
matrix blocks are equal to zero when m ≠ n, so that the general form of the stiffness ma-
trix has this structure, 
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The expression (25) enables calculation of displacements for each series term se-
peratly. The results are summed up at the end. The general form of the stiffness matrix is: 

 3 22 3
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4. THE ANALYSIS OF OPTIMAL RECTANGULAR RIBBED REINFORCED BRIDGE PLATES 

For our calculation we used software FSMFV. It was written by prof. dr Dragan Mi-
lašinović in FORTRAN in 1984 [1]. This program determines eigenvalues and eigenvec-
tors of free harmonic vibration of rectangular plates with different boundary conditions. 
In accordance to this, the stiffness matrices ˆ

wwmmK  and consistent mass matrices Mwwmm are 
used. For the stiffness matrices of strips with support conditions different from those of 
simply supported on both ends, coupling between the harmonics is neglected. Series terms 
are separated, and the procedure can be carried out for each term separately. 

The point of our analysis was to calculate the lowest natural frequencies of different 
types of ribbed reinforced plates, so that we could compare them and determine which 
one of them is optimal. Optimal means that the plate has the lowest natural frequency for 
the given lenght. The purpose of this analysis is to increase the natural period of the 
structure so that the acceleration response of the structure is decreased during earthquake. 

We analysed the reinforced plates with width of B = 10m and lenght L = 5 − 10m. The 
thickness of the plate is d = 0.2m and height of the ribbs is h = 0.75 − 1.5m. The amount 
of the ribs is n = 2 − 8. Fixed ratio of ribb's width/height is b/h = 1/3 . The width of the 
ribbs is b = 0.25 − 0.5m, and distance between them is b1 = 0.857 − 9.5m. 

We assumed that these plates are part of bridge construction, so we analysed three 
boundary conditions in longitudinal direction: 

− simply supported ends 
− clamped ends 
− one end simply supported and the other clamped, 

while we assumed that the plate ends are free in transverse direction (the direction of 
discretization). The results are shown in Table 1.  

The overview of the input parameters: 
− fixed parameters: 

B=10m, 
D=0.2m, 
b/h=1/3, 

− variated parameters: 
L=5, 10, 15, 20m (∆L=5m), 
h=0.75, 1.00, 1.25, 1.5m (∆h=0.25m), 
n=2, 3, 4, 5, 6, 7, 8 . 

The characterstics of plate material (reinforced concrete): 
Ex    = 35820000 kN/m2 , elasticity modulus 
Ey    = 35820000 kN/m2, elasticity modulus 
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Gxy = 17910000 kN/m2 , shear modulus 
νx    = νy =0.0, poisson's coefficients 
ρ= 2.5 t/m3 , mass density  

The total amount of analysed plates, for each type of boundary conditions, is 
4x4x7=112. 

5. RESULTS 

Table 1. − The lowest natural frequencies of plates for each type of boundary conditions 
for plate's lenght of 5, 10, 15 and 20 meters 

boundary conditions L [m] h [m] n ω [rad/s] T [s] 
5 0.75 2 114.837 0.055 

10 0.75 2 38.255 0.164 
15 0.75 4 10.070 0.624 

simply supported ends 

20 0.75 7 11.320 0.555 
5 0.75 2 158.945 0.040 

10 0.75 2 52.331 0.120 
15 0.75 5 14.762 0.426 

one end simply supported 
and the other clamped 

20 0.75 8 11.410 0.551 
5 0.75 2 215.841 0.029 

10 0.75 2 68.596 0.092 
15 0.75 2 35.398 0.177 

both clamped ends 

20 0.75 8 12.485 0.503 

 
Graph 1. Functions ω(L) for each type of boundary conditions (see Table 1.) 
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Graph 2. Functions ω(n) for plate's lenght L = 15m. 

  
Graph 3. Functions ω(h) for each amount of ribbs (n = 2 − 8)  

for simply supported plate L = 20m. 
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METODA KONAČNIH TRAKA U ANALIZI OPTIMALNIH 
PRAVOUGAONIH SAVIJAJUĆIH MOSTOVSKIH PLOČA  

Dragan Milašinović, Radomir Cvijić, Aleksandar Borković 

Ako konstrukcija vibrira, moguće je dinamički problem svesti na statički primjenom 
D'Alembert-ovog principa dinamičke ravnoteže. Prema tom principu inercijalne sile koje djeluju 
na konstrukciju su jednake proizvodu mase i ubrzanja te djeluju u suprotnom smjeru u odnosu na 
ubrzanje. Kod slobodnih vibracija sistem osciluje u normalnom modu te je moguće transformisati 
jednačine ravnoteže u standarni problem svojstvenih vrijednosti. U teoriji konstrukcija su razvijeni 
različitii metodi za rješavanje problema svojstvenih vrijednosti, na primjer Bishop-ov metod [2]. U 
ovom radu metoda konačnih traka je korištena u analizi svojstvenih frekvencija i svojstvenih 
vektora pravougaonih savijajućih mostovskih ploča. Cilj naše analize je bio da pronađemo najniže 
svojstvene frekvencije raznih tipova rebrastih armirano-betonskih ploča kako bi utvrdili koje od 
njih su optimalne sa stanovišta dinamike konstrukcija, tj. koje od njih imaju najviše vrijednosti 
perioda oscilovanja.  

Ključne reči: metoda konačnih traka, slobodne vibracije, mostovske ploče.  

 


