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Abstract. In this paper an influence of ring stiffness distribution along the shell defined 
through  on the shell stiffness on the case on axially symmetric problem for cylindrical 
shell is investigated. Optimality conditions are formulated. 
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1. INTRODUCTION 

In order to compute stiffened shells two approaches are usually applied. The first one 
is based on discretization of a studied construction using either FEM or FDM. An associ-
ated inversed problem is reduced to mathematical programming. Difficulties in getting a 
reliable solution increase with an increase of rings number N. Note that for non-uni-
formly stiffened shell N is equal to the number of design parameters. 

The second approach is based on homogenization of the differential equations and it 
attracts a recent attention of both mathematicians and mechanical engineers (see, for 
instance, [1-4]). For the inversed problems this approach is reduced to an optimal design 
of a construction with distributed parameters [5, 6]. 

2. THE  MAIN RESULTS 

The differential equation governing deflection between rings of a considered shell has 
the following form 
 IVw bw q+ = , (1) 
where: b = 12(1 − ν2) / R2h2; q = P(x) / D; D = Eh3 / 12(1 − ν2); R is shell radius; h is 
shell thickness; E, ν are Young modulus and Poisson’s coefficient of the shell and ring 
materials, respectively. 
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The coupling condition of the i-th ring can be formulated in the following manner 

 ; ( ) ( ) ;( ) ( ) ;( ) ( ) ( ) x isw w w w w w w w k x w− + − + − + + −
=′ ′ ′′ ′′ ′′′ ′′′= = = − = , (2) 

where ( )+, ( )- are intervals located to the right and to the left of the point x = is, where s 
is the distance between rings; k(x) = EF(x) / (R2D), F(x) is the area of transversal rings cross 
section. 

The boundary conditions on edges x = 0, L, for the  sake of simplicity, are taken in the 
form 

 0w w′′= = . (3) 

If the rings number is large (s / L = ε << 1), then in order to solve the problem (1)-(3), 
one can apply the asymptotic method of homogenization [1, 2]. 

Let us introduce the variable 
 /xξ = ε  (4) 

which is independent on x, and therefore, the associated differential operator reads 

 1
xw w w−

ξ′ ′ ′= + ε . (5) 

The deflection w is sought in the form 

 4 5
0 1( ) ( , ) ( , ) .....,w w x w x w x= + ε ξ + ε ξ +  (6) 

where wi (i = 1,2...) are periodic functions with the period L and with respect to ξ. 
Substituting (5), (6) into (1)-(4), and carrying out the asymptotic splitting with respect 

to ε powers, the following relations are obtained (periodicity conditions for wi with re-
spect to ξ are also applied): 
 1, 0, 0

IV IV
xw w w qξ + + β = , (7) 

 1, 1, 0 1 1, 1,( ; ; ) ( ; ; ) Lw w w w w wξ ξ ξ= ξ ξ ξ=′ ′′ ′ ′′= , (8) 

 *
1, / 1, / 0 0( )Lw w K x wξ ξ= ξ ξ=′′′ ′′′− = , (9) 

 0 / 0, 0, / 0, 0x L L x Lw w= =′′= = . (10) 

Note that during derivation of relation (9), it has been assumed that K*(x) = LK / S ∼ 1. 
Integrating (7) with respect to ξ, one gets 

 4 3 2
1 0, 0 1 2 3 4( ) / 24 ( ) ( ) ( ) ( ).IV

xw q w w C x C x C x C x= − − β ξ + ξ + ξ + ξ +   

Determining C1 − C4 from conditions (8), one gets 

 2 2
1 0, 0*( )( ) ( ) / 24IV

xw K x q w w L= − −β ξ ξ − . (11) 

Substituting (11) into (9), the following homogenized equation for 0w is obtained 

 *
0, 0( ( ) )IV

xw K x w q+ + β = . (12) 
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Equation (12) governs the axially symmetric deformation of a structurally orthotropic 
shell with continuously distributed rings stiffness along the whole shell length. The 
corrector (11) accounts discreteness of rings distribution. 

Consider first the case when variation of the rings stiffness is small, i.e. 

 *
1( ) ( )K x a x+ β = + ε ϕ , (13) 

where: a = const, ε1 << 1.  
The following series is assumed 

 2
0 00 1 01 1 02 ....w w w w= + ε + ε +  . (14) 

Substituting relations (13), (14) into equation (12) and comparing the coefficients 
standing by the same power of ε1 to zero, one gets 

 00, 00
IV

xw aw q+ = , (15) 

 0 , 0 0 1( ) ,      1, 2....IV
i x i iw aw x w i−+ = −ϕ =  . (16) 

Developing the functions q(x), ϕ(x), w0(x), w0i(x) into the Fourier series in the interval 
[0, L] one obtains 

 
1

sinn
n

q q nx
∞

−

= α∑   
1

cosn
n

nx
∞

−

ϕ = ϕ α∑   
1

sinoi in
n

W A nx
∞

−

= α∑ ,  (17) 

where: qn, ϕn, Ain − const, α = 2π / L. 
Substituting (17) into (15), (16) one obtains 

 4 4 4 4
0 1/( ) ,    /( )n n in i nA q n a A B n a−= α + = α + , (18) 

 10.5 ( )in k ik ik nB A A+ −= ϕ − , 

and in result the following approximation holds 

 0 1
1 1

sini
in

n i
w A nx

∞ ∞

= =

= ε α∑ ∑ . (19) 

The corrector wi is found from relation (11). 
The solution (19) can be also extended into the case of non-small rings stiffness varia-

tions (ε1 ~ 1) after an application of the Padé approximations [7]. 
In what follows the Padé approximation [1/1] for the series coefficients (19) gives 

 2
0 0 1 1 1 0 2 1 1 2[[ ( )] ( )]sinn n n n n n nw A A A A A A A nx= + ε − − ε α . (20) 

Consider the case α + ε1ϕ(x) = c(1 − ε1cos2αx), c, q − const. The integral rings stiffness 
is constant for any ε1 in this case. The coefficients of the series (18) take the form (for 
α = 1): 

 2
02 1 4 /[(2 1) [(2 1) ]]nA q n n c− = − π − + , 
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 4
,2 1 1,2 3 1,2 1 ,20.5 ( ) /[(2 1) ],    0i n i n i n i nA c A A n c A− − − − += + − + = . 

Now one can investigate how a change of ring stiffness influences a change of stiff-
ness of the whole shell. For this purpose one must compare w0 with w0

* (note that the shell 
deflection possesses rings with the same stiffness (ε = 0)): 

 *
0 0 2 1 sin(2 1)nw w D n x−− = − , 

where: D2n−1 = ε1A1,2n−1 / (A1,2n−1 − ε1A2,2n−1 ),. 
The dependence D1 / A01 characterizes shell stiffness variation (for q = const the 

fundamental contribution into deflection is introduced by the first harmonic of the series 
(20)) reported in Figure 1. 

The curves 1-5 correspond to ε1 = 0.1; 0.3; 0.5; 0.8; 1, respectively. 

 
Fig. 1. Dependence 011 / AD  vs c. 

The analysis of the results shown in Figure 1 yields a conclusion that for given load 
q = const, the given rings stiffness distribution is particularly suitable in the interval 
0.05 < c <0.15, and allows to decrease the largest shell deflection on amount of 30%. 

Consider now the problem of optimisation, where the shell flexibility is taken as be-
ing the minimized functional of the form 

 
0

min
L

I qwdx κ= →∫ , (21) 

with the constraint 

 
00

( )
L N

n
k x nl dx c

=

⋅ δ − =∑∫ . (22) 

If zero order approximation is used (w = w0), then one has to add (10), (12) to the con-
straints. Therefore, following [5], the following new control function ϕ(x) is applied 

 sink = α + γ ϕ ,   min max0.5( )k kα = + ,   min max0.5( )k kγ = − .  (23) 

The inversed problem reads 
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0

min
L

I qwdx φ= →∫ ,   1
0

sin
L cI dx − α

= ϕ =
γ∫ , (24) 

 0, 0( sin )   IV
xw w q+ α + γ ϕ = , (25) 

 0 / 0, 0 / 0, 0x L x Lw w= =′′= = . (26) 

Following the approaches applied in the theory of optimal control with one variable, 
one gets the optimality condition of the problem (24)-(26). For this purpose one can write 
the expressions governing the first integrals (24) variations and equation in variations 
corresponding to (26), of the forms 

 
0

L

I q wdxδ = δ∫ ;   1
0

cos
L

I dxδ = ϕδϕ∫ ; (27) 

 0, 0 0( sin ) cos 0IV
xw w wδ + α + γ ϕ δ + γ ϕ δϕ = . (28) 

Notice that equation (28) is obtained first after substitution w0 + δw0, ϕ + δϕ instead 
of w0 and ϕ0 in (25), and after extraction of the terms linear with respect to δw0 and δϕ. 

In what follows we are going to express the first variation of the minimized functional 
through the variation δϕ. 

For this purpose the conjugated variable v(x) is introduced, which is defined through the 
condition that the expression for variation of the minimized functional does not include δw0. 
Multiplying the left hand side of equation (28) by v(x), and integrating it from 0 to L, one gets 

 0, 0 0
0

[ ( sin ) cos ] 0
L

IV
xv w w w dxδ + α + γ ϕ δ + γ ϕ δϕ =∫ . 

Next carrying out the integration by parts with inclusion of (25), (26), the above inte-
gral is transformed to the following form 

 0 0
0

[( ( sin ) )   cos  ]
L

IVv v w vw dx+ α + γ ϕ δ + γ ϕ δϕ∫ , (29) 

and the following boundary conditions are applied 

 / 0, / 0, 0x L x Lv v= =′′= = . (30) 

Following the methods of theory of optimal control with one variable, the variation δI1 is 
attached to δI with a help of the Lagrange multiplier λ = const, and the relation (29) reads 

 0 0
0

[( (  sin ) ) ( ) cos ]
L

IVI v v q w vw dxδ = + α + γ ϕ + + δ + λ + γ ϕδϕ∫ . (31) 

In order to satisfy independence of δI and δw0, one gets 

 ( sin ) 0IVv v q+ α + γ ϕ + = . (32) 

The sought relation linking δI with δϕ is obtained for the first variation of the 
optimised functional of the form 

 0
0

( )cos   
L

I vw dxδ = λ + γ ϕ δϕ∫ . 
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Finally, it is easy to get the necessary optimization condition of the form 

 0( ) cos  0vwλ + γ ϕ = . (33) 

Observe that an inclusion of discreteness of strings distribution (11) complicates the 
considered problem essentially. In this case the minimized functional (21) with an ac-
count of (6), (12) has the following form 

 
L

2
0

0

I  q(1  k ( ))f x w dx= +∫ , (34) 

where: f(x) = x2(x − l) / 24. 
In this case one gets both equivalent equations to (32) and (33), respectively, of the 

forms  
 2( sin ) (1 ( sin ) ),IVv p v q f+ + γ ϕ = − + α + γ ϕ  (35) 

 0 0cos ( 2( sin ) ) 0vw fwϕ γ + α + γ ϕ + λ =  (36) 
where: p = β + α. 

It is worth noticing that the considered optimization problem is reduced to that of 
solutions to the boundary value problems (12), (3) and (35), (30). Controlling function 
ϕ(x) is found through optimality condition (36), whereas the constant λ is defined 
through izoparametric condition (25). 

The obtained non-linear boundary value problem can be solved numerically either us-
ing one of the methods of successive optimisation [5] or applying a method of perturba-
tions analogous to that used while solving the direct problem (13)-(16). 
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OPTIMALNO PROJEKTOVANA PRSTENASTA UKRUĆENJA  
LJUSKI 

Igor V. Andrianov, Jan Awrejcewicz, Alexandr A. Diskovskyy 

U radu su predstavljeni rezultati izučavanja uticaja rasporeda prstenastih ojačanja duž ljuske 
definisani preko krutosti ljuske u slučaju aksijalno simetrične cilindrične ljuske. Formulisani su 
uslovi optimalnosti.  

Ključne reči: ljuska, homogenizacija, metoda anaizotropije, optimizacija 


