
FACTA UNIVERSITATIS  
Series: Mechanics, Automatic Control and Robotics Vol. 6, No 1, 2007, pp. 45 - 64 

 

THE TRANSVERSAL VIBRATIONS OF A NON-CONSERVATIVE 
DOUBLE CIRCULAR PLATE SYSTEM  

UDC 531+534+517.93(045)=111 

Katica (Stevanović) Hedrih, Julijana Simonović 

Faculty of Mechanical Engineering University of Niš 
Mathematical Institute SANU Belgrade 

Yu-18 000- Niš, ul. Vojvode Tankosiċa 3/22, 
Telefax: 381 18 241 663, Mobile 063 8 75 75 99 

e-mail: katica@masfak.ni.ac.yu * khedrih@eunet.yu * sjupe@ptt.yu 

Abstract. The interest in the study of coupled plates as new qualitative systems has 
grown exponentially over the last few years because of the theoretical challenges 
involved in the investigation of such systems. As introduction, a review of first author's 
research results in area of transversal vibrations of different double plate systems is 
presented (see Refs. [2-7]).  
The main result of this contribution is the analytical solution of the coupled 
homogeneous and nonhomogeneous partial differential equations of the free and forced 
vibrations of the double circular plate system coupled by elastic or visco-elastic layer 
[1]. This solution is obtained by the use of the method of Bernoulli's particular integral 
as well as Lagrange's method of the constants variation. Some numerical examples are 
presented along with visualizations of the double plate free and forced vibrations. 
The obtained analytical and numerical result is very valuable for university teaching 
process in the area of structural system elastodynamics as well as of hybrid deformable 
body system vibrations. 

Key words:  Coupled subsystems, coupled dynamics, circular plate, hybrid, multi 
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1. INTRODUCTION 

The interest in the study of coupled plates as new qualitative systems (see Refs. [2-11]) 
has grown exponentially over the last few years because of the theoretical challenges in-
volved in the investigation of such systems. The recent technological innovations have 
caused a considerable interest in the study of components and hybrid dynamical proc-
esses of coupled rigid and deformable bodies (plates, beams and belts) denoted as hybrid 
systems, characterized by the interaction between subsystem dynamics, governed by cou-
pled partial differential equations with boundary and initial conditions. 
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In the papers [7] and [9] by using the example of hybrid systems as static as well as 
dynamically coupled discrete subsystem of rigid bodies and continuous subsystem, the 
method for obtaining frequency equations of small oscillations is presented. Also, the series 
of theorems of small oscillations frequency equations are defined. By using examples, the 
analogy between frequency equations of some classes of these systems is identified. The 
special cases of discretization and continuation of coupled subsystems in the light of these 
sets of proper circular frequencies and frequency equations of small oscillations are ana-
lyzed [8].  

The paper by K. Poltorak and K. Nagaya (1985) [14] was concerned with a method for 
solving forced vibration problems of solid sandwich plates with irregular boundaries. The 
exact, general solution of the equation of motion in terms of Bessel functions is found. The 
boundary problem is solved by using the Fourier expansion collocation method. The damping 
properties of an intermediate, viscoelastic layer are taken into consideration by means of a 
concept of a complex shear modulus. This paper by K. Poltorak and K. Nagaya (1985) [15] 
deals with a method for solving free vibration problems of three-layered isotropic plates of 
arbitrary shape with clamped edges. The direct solution of the Yan and Dowell equation of 
motion, in terms of Bessel functions, is found. 

Composite materials are widely employed in the new lightweight structure technology for 
the construction of many structural members such as multilayered plates and shells. Usually, 
these structures have complex geometries and lay ups in order to meet specific design require-
ments and this leads to an anisotropic global behaviour, which is generally characterized by 
bending–stretching coupling. Then, the structural dynamic analysis plays a crucial role in the 
design and tailoring of this kind of structures in order to obtain the desired response. 

The study of transversal vibrations of an elastically connected double plate system is im-
portant for both theoretical and pragmatic reasons (see Refs. [2], [3], and [13]). Many impor-
tant structures may be modelled as composite structure. Like that system it is possible to use a 
visco-elastically connected double plate system as elements for acoustic and vibrations' isola-
tion in a system, as a wall or ground; this is the subject of our research presented in this paper. 

The obtained results have particular practical importance especially if the models re-
fer to structures made of material with creeping features (see Ref. [12]). 

2. THEORETICAL PROBLEM FORMULATION AND  
GOVERNING EQUATIONS OF THE BASIC PROBLEM  

Let's consider two isotropic, elastic, thin circular plates, with width hi, i = 1,2, modulus of 
elasticity Ei, Poisson's ratio µi and shear modulus Gi, plate mass distribution ρi. The plates are 
of constant thickness in the z-direction (see Fig. 1. a)). The contours of the plates are parallel. 
The plates are interconnected by a linear elastic Winkler type layer with constant surface stiff-
ness c. This elastically connected double plate system is a composite structure type, or sand-
wich plate, or layered plate, and here it will be a first considered problem. 

The origins of the two coordinate systems are located at the corresponding centres in 
the undeformed plate's middle surfaces, as shown in Fig. 1.a), and have parallel 
corresponding axes. The problem at hand is to determine solutions and the own vibration 
frequencies for such a double plate system elastically connected by an elastic spring layer 
distributed along plates contour surfaces.  

The use of Love-Kirchhoff approximation makes the classical plate theory essentially 
a two dimensional model, in which the normal and transverse forces and bending and 
twisting moments on plate cross sections (see Ref. [16]) can be found in term of the 
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displacement wi(r, ϕ, t), i = 1,2 of the middle surface points, which is assumed to be a 
function of two coordinates, r and ϕ and time t . 

The plates are assumed to have the same contour forms and boundary conditions. 
Let us suppose that the plate middle surfaces are plane in the undeformed state. If the 

plates transverse deflections wi(r, ϕ, t), i = 1,2 are small compared to the plates thicknesses, 
hi, i = 1,2,(see Ref. [16]) and that plate vibrations occur only in the vertical direction. 

Let us denote with 
3

( ) 212(1 )
i i

i
i

h
=

− µ
ED , i = 1,2 the bending cylindrical rigidity of plates. 

On the basis of previous assumptions, we suppose that plate displacements ui (r, ϕ, z, t), 
i = 1,2 and vi (r, ϕ, z, t), i = 1,2 of the generic plate point Ni (r, ϕ, z), i = 1,2 in the radial 
and circular direction can be expressed in function of its distance z  from the correspond-
ing plate middle surface and its transversal displacement wi(r, ϕ, t), i = 1,2 in direction of 
the axis z, and also the same displacement of the corresponding point Ni0(r, ϕ, 0), i = 1,2 
in the plate middle surface. 
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Fig. 1. a) An elastically connected double circular plate system; b) A visco-elastically 
connected double circular plate system; c) model of visco-elastic interconnected layer 

The governing equations (see Ref. [2]) are formulated in terms of two unknowns: the 
transversal displacements w(i)(r, ϕ, t), i = 1,2 in direction of the axis z, of the upper plate 
middle surface and of the lower plate middle surface. The system of two coupled partial 
differential equations is derived by using d'Alembert's principle or by variational princi-
ple (see Ref. [16]). These partial differential equations of the elastically connected double 
plate system are in the following forms: 
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where is c - constant surface mechanical stiffness of elastic layer. 

Let us introduce the following notations: 2
( )i

i i

ca
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ρ

, i = 1,2 and 4
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i i

c
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=
ρ
D , i = 1,2 By 

decoupling the equations of the previous system (1) we obtain the corresponding two 
partial differential equations of the decoupled plate system, which describe two partial 
plates founded on the elastic foundation of the Winkler type. These partial differential 
equations are in the following forms: 
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3. THE PARTICULAR SOLUTIONS OF GOVERNING BASIC DECOUPLED EQUATIONS 

The solution of the previous system of partial-differential equations can be looked for 
by Bernoulli's method of particular integrals in the form of multiplication of two 
functions, of which the first W(i)(r, ϕ), i = 1,2 depends only on space coordinates r and ϕ, 
and the second is a time function T(i)(t), i = 1,2 (see Refs. [2] and [3]): 

 ( ) ( )( , , ) ( , ) ( )i i iw r t W r T tϕ = ϕ , i = 1,2 (3) 

The assumed solution is introduced in the previous system of equations (1) and (2) 
and after transformation we obtain the following: 
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Thus, we obtain in the space cylindrical-polar coordinates r, ϕ and z the following 
differential equations:   
 2

( ) ( ) ( )T ( ) T ( ) 0i i it t+ ω =��  

 4
( ) ( ) ( )W ( , ) W ( , ) 0i i ir k r∆∆ ϕ − ϕ = , i = 1,2 (5) 

where eigen circular frequencies of the corresponding basic system of decoupled plates are: 
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It is easy to find the following time functions: 

 ( ) ( ) ( ) ( ) ( )T ( ) cos sini i i i it A t B t= ω + ω , i = 1,2 (7) 

4. THE  SPACE COORDINATE EIGEN AMPLITUDE FUNCTIONS  

Let's consider the space coordinate amplitude functions W(i)(r, ϕ), i = 1,2. For the 
plates in circular form, the set of the partial differential equations in the space cylindrical-
polar coordinates r, ϕ and z is: 

 2
( ) ( )( , ) ( , ) 0i ir k r∆ ϕ ± ϕ =W W , i = 1,2 (8) 

where ∆ is the differential operator 
2 2

2 2 2

1 1
r rr r

∂ ∂ ∂
∆ = + +

∂∂ ∂ϕ
. 

We write the solutions of previous equations in the form W(i)(r, ϕ) = Φ(i)(ϕ) R(i)(r) and af-
ter applying this solution we obtain the following system of ordinary differential equations: 

 2
( ) ( )( ) ( ) 0i in′′Φ ϕ ± Φ ϕ =  and 

2
2

( ) ( ) ( ) ( )2

1R ( ) R ( ) ( ) R ( ) 0i i i i
nr r k r

r r
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The second equation of previous system has particular solutions in the form of Neuman's 
and Bessel's functions, but Neuman's functions for r = 0 have infinite value, then particular 
solutions of this problem are only Bessel's function of the first kind with real argument Jn(x) 
as well as with imaginary arguments In(x), where x = kr. The modified Bessel's function of 
the first kind with imaginary arguments In(x), with order n, is in the following form: 



 The Transversal Vibrations of a Non-Conservative Double Circular Plate System   49 

 cos( 1)( ) ( ) ( ) cos
2

n
n x t

n nx i ix e ntdt
+π

− −

−π

−
= =

π ∫I J  (10) 

If n is an integer number, than this function satisfies the following differential equation: 
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By using previous considerations and the study of equations (9), we can write their 
solutions in the polar coordinates as follows: 

 ( ) ( ) ( )0( ) sin( )i n i n i nC nΦ ϕ = ϕ + ϕ  and  

 ( ) nm n ( ) ( ) n ( )R ( ) J ( ) I ( )i i nm i nm i nmr k r K k r= + , i = 1,2 (12) 

So the solutions for the space coordinate amplitude functions are in the following forms: 

 ( ) nm n ( ) ( ) n ( ) ( )0( , ) [J ( ) I ( )]sin( )i i nm i nm i nm i nr k r K k r nϕ = + ϕ + ϕW , i = 1,2 (13) 

which are the space coordinate-eigen amplitude normal functions for boundary conditions 
in the form constrained along the contour circular plate. The characteristic numbers are 
the roots of the next characteristic transcendent equation (see ref. [10]) 
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 n = 1,2,3,4,.... (13a) 

The family (13a) of characteristic equations for each n has an infinite number of solu-
tions (roots) and we are going to mark them with knm, m = 1,2,3,... denoting a family of 
eigen values for each n = 1,2,3,4,.... The sets of equation (13a) of eigen values for each 
n = 1,2,3,4,... can be rewritten in the form: 
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As the solutions (roots) of this equation are λnm, n = 1,2,3,4,..., m = 1,2,3,... so we have 
knm = λnm /a where ais the plate radius. The graphics of characteristic transcendent equations 
for n = 0, n = 1 and n = 2 are reported in figure 2 a, b and c. 

(a) (b)  (c)   

Fig. 2. The graph of characteristic transcendent equation (13b) for: (a) n = 0, where we can 
see only eight solutions (roots) λ0m, m = 1,2,...,8; of the set with infinite number of 
roots, (b) n = 1, where we can see only eleven solutions (roots) λ1m, m = 1,2,...,11; of 
the set with infinite number of roots, and (c) n = 2 where we can see only eleven 
solutions (roots) λ2m, m = 1,2,...,11 of the set with infinite number of roots. 
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In Fig 2. (a) we can see from the set with infinite number of roots, corresponding to 
various n only a certain number of solutions (roots) denoted with λnm. For example, in Fig. 
2 (a) we find the following roots λ01 = 3.196, λ02 = 6.306, λ03 = 9.439,..., in (b) the follow-
ing roots λ11 = 4.61, λ12 = 7.8, λ13 = 10.96,... and in Fig. 2. (c) the following roots λ21 = 5.9, 
λ22 = 9.2, λ23 = 12.4,.... For those values of characteristic numbers the space coordinate 
eigen amplitude functions are represented in Fig. 3. 

Last but not least, we obtain the general solutions for the transversal plates middle 
surface point displacement in the following forms:  
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The space coordinate eigen amplitude functions W(i)nm(r, ϕ), i = 1,2, 
n, m = 1,2,3,4,...∞ satisfy the following conditions of orthogonality: 
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where: i = 1,2, n, m = 1,2,3,4,...∞, s, r = 1,2,3,4,...∞, which is easily derived by using sys-
tem equations (13). 

                               

(a)                        

                                          

 (b)                      

Fig. 3. The space coordinate eigen amplitude functions Wnm(r,ϕ) for: 
(a) λ11 = 4.61, λ12 = 7.8, λ13 = 10.96,...; (b) λ21 = 5.9, λ22 = 9.2, λ23 = 12.4,...  
are presented above and the corresponding cross sections are presented below; 
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5. THE PARTICULAR SOLUTIONS OF GOVERNING SYSTEM OF COUPLED  
PARTIAL DIFFERENTIAL EQUATIONS FOR FREE SYSTEM OSCILLATIONS 

For the solutions of the governing system of the coupled partial differential equations 
(1) for free double plates oscillations in the form of expansion (15) the eigen amplitude 
function W(i)nm(r, ϕ), i = 1,2, n, m = 1,2,3,4,...∞ are the same as in the case of decoupled 
plates problem and T(i)nm(t), i = 1,2, n, m = 1,2,3,4,...∞ are unknown time functions 
describing their time evolution. 

After introducing (15) into the following system of the coupled partial differential 
equations for free double plate's oscillations: 
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we obtain: 
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By multiplying the first and second equation with W(i)sr(r, ϕ)rdrdϕ, integrating along 
middle plate surface and taking into account orthogonality conditions (16) and equal 
boundary conditions of the plates, we obtain the mn -family of systems containing two 
coupled ordinary differential equations for determination of the unknown time functions 
T(i)nm(t), i = 1,2, n, m = 1,2,3,4,...∞ in the following form: 

 4 4 2 2
(1) (1) (1) (1) (1) (1) (2)T ( ) [ ]T ( ) T ( ) 0nm nm nm nmt c k a t a t+ + − =��  

 4 4 2 2
(2) (2) (2) (2) (2) (2) (1)T ( ) [ ]T ( ) T ( ) 0nm nm nm nmt c k a t a t+ + − =�� , n, m = 1,2,3,4,...∞,  

or in the form: 
 2 2

(1) (1) (1) (1) (2)T ( ) T ( ) T ( ) 0nm nm nm nmt t a t+ ω − =��  

 2 2
(2) (2) (2) (2) (1)T ( ) T ( ) T ( ) 0nm nm nm nmt t a t+ ω − =��  n, m = 1,2,3,4,...∞ (18) 

Eliminating the time function T(2)nm(t) from previous mn-family of system of the 
coupled second order ordinary differential equations, we obtain the mn-family of one of 
four order equations in the form of: 

 2 2 2 2 2 2
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with the corresponding mn-family frequency equation in the form of polynomial, biquad-
ratic equation with respect to unknown own circular frequencies 2

nmω� , n, m = 1,2,3,4,...∞: 

 4 2 2 2 2 2 2 2
(1) (2) (1) (2) (1) (2)[ ] [ ] 0nm nm nm nm nm nm a aω + ω + ω ω + ω ω − =� �  (20) 
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Formally, we can write the system equation (18) by the following matrices of inertia 
Anm and of quasielastic coefficients Cnmof the dynamical system corresponding to the mn-
family, with two degrees of freedom:  
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and by using the solutions in the form of:   
 ( ) ( )T ( ) cos( )i nm i nm nm nmt A t= ω + α� , i = 1,2 (24) 

where 2
nmω� , n, m = 1,2,3,4,...∞ are unknown eigen circular frequencies, A(i)nm unknown 

amplitudes, and αnm unknown phases. Then the frequency equation of the mn -family is 
in the form of: 
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which is equal to equations (20) with the sets of two roots ( )
2
nm sω� , n, m = 1,2,3,4,...∞, s = 1,2. 

The relations of the amplitudes of each set are in the form: 
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If we take into account that it is:   
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The solutions of the mn-family mode time functions T(i)nm(t), i = 1,2, n, m = 1,2,3,4,...∞ 
are in the form of: 
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where the mn-family mode n, m = 1,2,3,4,...∞ contains the set of unknown constants 
Anm, Bnm, Cnm, Dnm defined by plates initial conditions. 

Then, the particular solutions of the governing system of coupled partial differential 
equations for free system oscillations corresponding to plate displacements read  
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(2) (2) (2)

( , , ) W ( , ){A [A cos B sin ]

A [C cos D sin ]}

nm nm nm nm nm nm
n m

nm nm nm nm nm

w r t r t t

t t

∞ ∞

= =

ϕ = ϕ ω + ω +

+ ω + ω

∑∑ � �

� �
 

The initial conditions are: 

 1 (1) 1
1 1

( , ,0) W ( , )[A C ] ( , )nm nm nm
n m

w r r g r
∞ ∞

= =

ϕ = ϕ + = ϕ∑∑  

 (1) (2)
2 (2) (2) (2) 2

1 1
( , ,0) W ( , ){A [A ] A [C ]} ( , )nm nm nm nm nm

n m
w r r g r

∞ ∞

= =

ϕ = ϕ + = ϕ∑∑  

 1
(1) (1) (2) 1

1 10

( , , ) W ( , )[ B D ] ( , )nm nm nm nm nm
n mt

w r t r g r
t

∞ ∞

= ==

∂ ϕ
= ϕ ω + ω = ϕ

∂ ∑∑ � � �  (30) 

 (1) (2)2
(2) (2) (1) (2) (2) 2

1 10

( , , ) W ( , ){A [ B ] A [ D ]} ( , )nm nm nm nm nm nm nm
n mt

w r t r g r
t

∞ ∞

= ==

∂ ϕ
= ϕ ω + ω = ϕ

∂ ∑∑ � � �  

where gi(r, ϕ) and ( , )ig r ϕ� , i = 1,2 are initial condition functions for middle plate points 
displacement and velocity, satisfying boundary conditions. Then, by initial conditions 
(30) and equations (29) the unknown coefficients are defined by no homogeneous algebra 
equation system. By using Cramer formula the set of the unknown constants Anm, Bnm, 
Cnm, Dnm for mn-family mode n, m = 1,2,3,4,...∞ are defined in the following form: 

 
( )

(2)
(2) 1 2 (1)

nm
1(2) 2

(2) (2) (1)

[A ( , ) ( , )] ( , )
A

[A A ] [ ( , )]

nm nm
A

nm nm nm
A

g r g r r rdrd

r rdrd

ϕ − ϕ ϕ ϕ
=

− ϕ ϕ

∫ ∫

∫ ∫

W

W
; 

 

(1)
2 (2) 1 (1)

nm
(2) (1) 2
(2) (2) (1)

[ ( , ) A ( , )] ( , )
C

[A A ] [ ( , )]

nm nm
A

nm nm nm
A

g r g r r rdrd

r rdrd

ϕ − ϕ ϕ ϕ
=

− ϕ ϕ

∫ ∫

∫ ∫

W

W
; 
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( )

(2)
(2) 1 2 (1)

nm
1(2) 2

(1) (2) (2) (1)

[A ( , ) ( , )] ( , )
B

[A A ] [ ( , )]

nm nm
A

nm nm nm nm
A

g r g r r rdrd

r rdrd

ϕ − ϕ ϕ ϕ
=

ω − ϕ ϕ

∫ ∫

∫ ∫

W

W

� �

�
; 

 

(1)
2 (2) 1 (1)

nm
(2) (1) 2

(2) (2) (2) (1)

[ ( , ) A ( , )] ( , )
D

[A A ] [ ( , )]

nm nm
A

nm nm nm nm
A

g r g r r rdrd

r rdrd

ϕ − ϕ ϕ ϕ
=

ω − ϕ ϕ

∫ ∫

∫ ∫

W

W

� �

�
 (31) 

The solutions (29) are the first main analytical result of our research of transversal 
vibrations of elastically connected double circular plates system. From analytical solu-
tions (29), and corresponding expressions (31) of the constant we can conclude that for 
one mn-family mode n, m = 1,2,3,4,...∞, to one eigen amplitude function corresponds two 
own circular frequencies and corresponding two-frequency time function T(i)nm(t), i = 1,2, 
n, m = 1,2,3,4,...∞. We can conclude that the elastical Winkler type layer duplicates the 
number of system circular frequencies corresponding to one eigen amplitude function of 
the mn -family mode n, m = 1,2,3,4,...∞. 

6. THEORETICAL PROBLEM FORMULATION AND GOVERNING EQUATIONS OF FORCED 
OSCILLATION OF THE VISCO-ELASTICALLY CONNECTED DOUBLE PLATE SYSTEM 

Let's consider the same system of plates but connected with a visco-elastic layer (see 
Fig. 1b)) and external excitation force distributed along the upper and lower surface. This 
visco-elastically connected double plate system is a composite visco-elastic structure type. 

If we present the interconnecting layer as a model of one visco-elastic element with 
starting element's length l0 whose ends have displacements w1(r, ϕ, t) and w2(r, ϕ, t), and 
velocities 1( , , )w r tϕ�  and 2 ( , , )w r tϕ� , as shown in at Fig. 1c), using visco-elastic element 
constitutive relation of force, displacements and velocities in that layer (see [1]), we will 
formulate governing equations for this problem in terms of two unknowns: the transversal 
displacements wi(r, ϕ, t), i = 1,2 in direction of the axis z of the upper plate middle 
surface and of the lower plate middle surface. Then, the system of two coupled partial 
differential equations of the forced visco-elastically connected double plate system is in 
the following form [9,10]: 

 

2
41 2 1
(1) 1 (1)2

2
(1) 2 1 (1)

( , , ) ( , , ) ( , , )( , , ) 2

[ ( , , ) ( , , )] ( , , )

w r t w r t w r tc w r t
t tt

a w r t w r t q r t

∂ ϕ ∂ ϕ ∂ ϕ⎡ ⎤+ ∆∆ ϕ − δ − −⎢ ⎥∂ ∂∂ ⎣ ⎦
− ϕ − ϕ = ϕ�

 

 

2
42 2 1
(2) 2 (2)2

2
(2) 2 1 2

( , , ) ( , , ) ( , , )( , , ) 2

[ ( , , ) ( , , )] ( , , )

w r t w r t w r tc w r t
t tt

a w r t w r t q r t

∂ ϕ ∂ ϕ ∂ ϕ⎡ ⎤+ ∆∆ ϕ + δ − +⎢ ⎥∂ ∂∂ ⎣ ⎦
+ ϕ − ϕ = ϕ�

 (32) 

where we use the same notations as in previous and define: 2δ(i) = b / ρihi- constant 
surface damping coefficient of visco-elastic layer; ( ) ( , , )iq r tϕ� , i = 1,2 - function of 
continual distributed transversal forces which we use like external excitation of plates. 
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The solution of the previous system (32) of partial-differential equations can be 
looked for by Bernoulli's method of particular integrals in the form(15) of multiplication 
of two functions, of which the first W(i)(r, ϕ), i = 1,2 depends only on space coordinates r 
and ϕ, and the second is a time function T(i)(t), i = 1,2. Here we use the same space 
coordinate eigen amplitude functions W(i)(r, ϕ), i = 1,2 as in the case of decoupled system 
and for the example of mentioned boundary conditions in form (13). 

7. THE ANALYTICAL SOLUTIONS OF THE TIME FUNCTIONS OF THE FORCED TRANSVERSAL 
VIBRATIONS OF A DOUBLE CIRCULAR PLATE SYSTEM WITH VISCO-ELASTIC LAYER  

Our next defined task is to derive analytical solution of the governing system of cou-
pled partial differential equations for forced system oscillations, equations (32). We con-
sider the eigen amplitude functions W(i)nm(x, y), i = 1,2, n, m = 1,2,3,4,...∞ expansion with 
unknown time functions T(i)nm(t), i = 1,2, n, m = 1,2,3,4,...∞ describing their time evolu-
tion [2] as mentioned above in the case of decoupled plates problem. Then after introduc-
ing (15) into (32), we obtain the following system of no homogeneous second order ordi-
nary differential equations with respect to the unknown time functions T(i)nm(t), i = 1,2, 
n, m = 1,2,3,4,...∞ for the mn-family mode: 
 2 2

(1) (1) (1) (1) (1) (1) (2) (1) (2) (1)T ( ) 2 T T ( ) T ( ) 2 T ( ) ( )nm nm nm nm nm nm nmt t a t t f t+ δ + ω − − δ =�� � �  

 2 2
(2) (2) (2) (2) (2) (2) (1) (2) (1) (2)T ( ) 2 T T ( ) T ( ) 2 T ( )nm nm nm nm nm nm nmt t a t f t+ δ + ω − − δ =�� � �  (33) 

where known time functions f(1)nm(t) and f(2)nm(t) are defined by the following expressions: 

 

2

(1) (1)
0 0

(1) 2
2

(1)
0 0

( , , ) W ( , )
( )

[W ( , )]

r

nm

nm r

nm

q r t r rdrd
f t

r rdrd

π

π

ϕ ϕ ϕ
=

ϕ ϕ

∫ ∫

∫ ∫

�
 

and 

 

2

(2) (1)
0 0

(2) 2
2

(1)
0 0

( , , ) W ( , )
( )

[W ( , )]

r

nm

nm r

nm

q r t r rdrd
f t

r rdrd

π

π

ϕ ϕ ϕ
=

ϕ ϕ

∫ ∫

∫ ∫

�
 (34) 

We can obtain the basic linear unperturbed equations of the coupled system of 
differential equations (33) neglecting the external excitations. Also, for the linear system, 
we can formally define the following matrices: mass inertia moment matrix A, damping 
coefficient matrix B, and quasielastic coefficients matrix C (see Ref. [14]):  

 
1

1nm
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

A , (1) (1)

(2) (2)

2 2
2 2
δ − δ⎛ ⎞

= ⎜ ⎟− δ δ⎝ ⎠
B , 

2 2
(1) (1)

2 2
(2) (2)

nm
nm

nm

a
a

⎛ ⎞ω −
= ⎜ ⎟⎜ ⎟− ω⎝ ⎠

C  (35) 

and the characteristic equation of the linearized coupled system is in the following form: 

 
2 2 2

(1) (1) (1) (1)2
2 2 2
(2) (2) (2) (2)

2 2
0

2 2
nm

nm nm
nm

a
a

λ + δ λ + ω − − δ λ
λ + λ + = =

− − δ λ λ + δ λ + ω
A B C  (36) 
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with four roots for every eigen amplitude function mode nm: 

 1,2 1 1
ˆ ˆnm nm nmipλ = −δ ∓  and 3,4 2 2

ˆ ˆnm nm nmipλ = −δ ∓  (37) 

We obtain own amplitude numbers from (see Refs. [2] and [3]): 

 
( ) ( )
1 2

2 2 2
(1) (1) (1) (1)2 2

s s
nm mn

s
snm snm snm nm

A A
C

a
= =

+ δ λ λ + δ λ + ω
�  or 

( ) ( )
1 2
( ) ( )
21 22

s s
nm nm

snms s
nm nm

A A
C

K K
= =   

and we rewrite the solution of linear coupled system in the form: 

 1 2
ˆ ˆ(1) (2)

(1) 21 01 1 01 21 02 2 02ˆ ˆ( ) cos( ) cos( )nm nmt t
nm nm nm nm nmT t K e R p t K e R p t−δ −δ= + α + + α  

 1 2
ˆ ˆ(1) (2)

(2) 22 01 1 01 22 02 2 02ˆ ˆ( ) cos( ) cos( )nm nmt t
nm nm nm nm nmT t K e R p t K e R p t−δ −δ= + α + + α  (38) 

where amplitudes and phases R0i and α0i are constants, defined by the initial conditions. 
To obtain an approximation of the solution of the coupled equations (32) for the 

forced vibrations by using the Lagrange's method of constant variations, we propose solu-
tions in the following forms: 

 1 2
ˆ ˆ(1) (2)

(1) 21 1 1 21 2 2( ) ( ) cos ( ) ( )cos ( )nm nmt t
nm nm nm nm nm nm nmT t K e R t t K e R t t−δ −δ= Φ + Φ  

 1 2
ˆ ˆ(1) (2)

(2) 22 1 1 22 2 2( ) ( )cos ( ) ( ) cos ( )nm nmt t
nm nm nm nm nm nm nmT t K e R t t K e R t t−δ −δ= Φ + Φ  (39) 

where two amplitudes Rinm(t) and two phases ˆ( ) ( )inm inm it p t tΦ = + φ , i = 1,2 are unknown 

functions. By introducing the condition that the first derivatives of the time functions ( ) ( )i nmT t� : 

 

1 1

2 2

1 1

ˆ ˆ(1) (1)
(1) 1 21 1 1 21 1 1 1

ˆ ˆ(2) (2)
2 21 2 2 21 2 2 2

ˆ ˆ(1) (1)
21 1 1 21 1 1 1

ˆ(2)
21

ˆ ˆ( ) ( ) cos ( ) ( ) sin ( )
ˆ ˆ( ) cos ( ) ( ) sin ( )

( ) cos ( ) ( ) ( )sin ( )

t t
nm

t t

t t

T t K e R t t K e R t p t

K e R t t K e R t p t

K e R t t K e R t t t

K e

−δ −δ

−δ −δ

−δ −δ

−δ

= −δ Φ − Φ −

−δ Φ − Φ +

+ Φ − φ Φ +

+

�

��

2 2
ˆ(2)

2 2 21 2 2 2( ) cos ( ) ( ) ( )sin ( )t tR t t K e R t t t−δΦ − φ Φ��

 

 

1 1

2 2

1 1

ˆ ˆ(1) (1)
(2) 1 22 1 1 22 1 1 1

ˆ ˆ(2) (2)
2 22 2 2 22 2 2 2

ˆ ˆ(1) (1)
22 1 1 22 1 1 1

ˆ(2)
22

ˆ ˆ( ) ( ) cos ( ) ( ) sin ( )
ˆ ˆ( ) cos ( ) ( ) sin ( )

( ) cos ( ) ( ) ( )sin ( )

t t
nm

t t

t t

T t K e R t t K e R t p t

K e R t t K e R t p t

K e R t t K e R t t t

K e

−δ −δ

−δ −δ

−δ −δ

−δ

= −δ Φ − Φ −

−δ Φ − Φ +

+ Φ − φ Φ +

+

�

��

2 2
ˆ(2)

2 2 22 2 2 2( ) cos ( ) ( ) ( ) sin ( )t tR t t K e R t t t−δΦ − φ Φ��

 

have the same forms as in the case where amplitudes Rinm(t) and difference of phases 
φinm(t) are constants: 

 
1 1

2 2

ˆ ˆ(1) (1)
(1) 1 21 1 1 21 1 1 1

ˆ ˆ(2) (2)
2 21 2 2 21 2 2 2

ˆ ˆ( ) ( ) cos ( ) ( ) sin ( )
ˆ ˆ( ) cos ( ) ( ) sin ( )

t t
nm

t t

T t K e R t t K e R t p t

K e R t t K e R t p t

−δ −δ

−δ −δ

= −δ Φ − Φ −

−δ Φ − Φ

�
 

 
1 1

2 2

ˆ ˆ(1) (1)
(2) 1 22 1 1 22 1 1 1

ˆ ˆ(2) (2)
2 22 2 2 22 2 2 2

ˆ ˆ( ) ( )cos ( ) ( ) sin ( )
ˆ ˆ( ) cos ( ) ( ) sin ( )

t t
nm

t t

T t K e R t t K e R t p t

K e R t t K e R t p t

−δ −δ

−δ −δ

= −δ Φ − Φ −

−δ Φ − Φ

�
 (39*)  
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we obtaine first two conditions for the derivatives of the unknown functions ( )iR t�  and ( )i tΦ� . 

 
1 1

2 2

ˆ ˆ(1) (1)
21 1 1 21 1 1 1

ˆ ˆ(2) (2)
21 2 2 21 2 2 2

( ) cos ( ) ( ) ( )sin ( )

( ) cos ( ) ( ) ( ) sin ( ) 0

t t

t t

K e R t t K e R t t t

K e R t t K e R t t t

−δ −δ

−δ −δ

Φ − φ Φ +

+ Φ − φ Φ =

��

��
 

 
1 1

2 2

ˆ ˆ(1) (1)
22 1 1 22 1 1 1

ˆ ˆ(2) (2)
22 2 2 22 2 2 2

( ) cos ( ) ( ) ( )sin ( )

( ) cos ( ) ( ) ( ) sin ( ) 0

t t

t t

K e R t t K e R t t t

K e R t t K e R t t t

−δ −δ

−δ −δ

Φ − φ Φ +

+ Φ − φ Φ =

��

��
 (40) 

After multiplying first equation (40) with cofactor (1)
22K  or (2)

22K  and second with 
(1)
21K−  or (2)

21K− and summing these two equation the system of equations follows : 

 1 1 1 1 1( )cos ( ) ( ) ( )sin ( ) 0R t t R t t tΦ − φ Φ =��  

 2 2 2 2 2( ) cos ( ) ( ) ( )sin ( ) 0R t t R t t tΦ − φ Φ =��  (41) 

The second derivatives ( ) ( )i nmT t��  are in the forms: 

 

1 1

1 1

1 1

ˆ ˆ2 (1) (1)
(1) 1 21 1 1 1 21 1 1

ˆ ˆ(1) (1)
1 21 1 1 1 1 21 1 1 1

ˆ ˆ(1) (1) 2
21 1 1 1 21 1 1 1

ˆ ˆ( ) ( )cos ( ) ( )cos ( )

ˆ ˆˆ2 ( ) sin ( ) ( ) ( ) sin ( )

ˆ ˆ( ) sin ( ) ( ) sin (

t t
nm

t t

t t

T t K e R t t K e R t t

K e R t p t K e R t t t

K e R t p t K e R t p t

−δ −δ

−δ −δ

−δ −δ

= δ Φ − δ Φ +

+ δ Φ + δ φ Φ −

− Φ − Φ

�� �

�

�

1 2

2 2

2 2

ˆ ˆ(1) 2 (2)
21 1 1 1 1 2 21 2 2

ˆ ˆ(2) (2)
2 21 2 2 2 21 2 2 2

ˆ ˆ(2) (2)
2 21 2 2 2 21 2 2 2

)
ˆˆ( ) ( )cos ( ) ( ) cos ( )

ˆ ˆ ˆ( ) cos ( ) 2 ( ) sin ( )
ˆ ˆ( ) ( )sin ( ) ( ) sin ( )

t t

t t

t t

K e R t p t t K e R t t

K e R t t K e R t p t

K e R t t t K e R t p t

K

−δ −δ

−δ −δ

−δ −δ

−

− φ Φ + δ Φ −

−δ Φ + δ Φ +

+δ φ Φ − Φ −

−

�

�

� �

2 2
ˆ ˆ(2) 2 (2)

21 2 2 2 21 2 2 2 2ˆ ˆ( ) sin ( ) ( ) ( ) cos ( )t te R t p t K e R t p t t−δ −δΦ − φ Φ�

 

 

1 1

1 1

1 1

ˆ ˆ2 (1) (1)
(2) 1 22 1 1 1 22 1 1

ˆ ˆ(1) (1)
1 22 1 1 1 1 22 1 1 1

ˆ ˆ(1) (1) 2
22 1 1 1 22 1 1 1

ˆ ˆ( ) ( ) cos ( ) ( )cos ( )

ˆ ˆˆ2 ( ) sin ( ) ( ) ( )sin ( )

ˆ ˆ( ) sin ( ) ( ) sin (

t t
nm

t t

t t

T t K e R t t K e R t t

K e R t p t K e R t t t

K e R t p t K e R t p t

−δ −δ

−δ −δ

−δ −δ

= δ Φ − δ Φ +

+ δ Φ + δ φ Φ −

− Φ − Φ

�� �

�

�

1 2

2 2

2 2

ˆ ˆ(1) 2 (2)
22 1 1 1 1 2 22 2 2

ˆ ˆ(2) (2)
2 22 2 2 2 22 2 2 2

ˆ ˆ(2) (2)
2 22 2 2 2 22 2 2 2

)
ˆˆ( ) ( ) cos ( ) ( ) cos ( )

ˆ ˆ ˆ( ) cos ( ) 2 ( ) sin ( )
ˆ ˆ( ) ( )sin ( ) ( ) sin ( )

t t

t t

t t

K e R t p t t K e R t t

K e R t t K e R t p t

K e R t t t K e R t p t

K

−δ −δ

−δ −δ

−δ −δ

−

− φ Φ + δ Φ −

−δ Φ + δ Φ +

+δ φ Φ − Φ −

−

�

�

� �

2 2
ˆ ˆ(2) 2 (2)

22 2 2 2 22 2 2 2 2ˆ ˆ( ) sin ( ) ( ) ( ) cos ( )t te R t p t K e R t p t t−δ −δΦ − φ Φ�

 (42) 

After introducing the first ( ) ( )i nmT t� ,eqs. (39*) and second ( ) ( )i nmT t�� , eqs (42) derivatives 
of the proposed solutions (39) in the system of nonhomogeneous equations (33) we obtain 
two more equations in the derivatives of the unknown functions ( )inmR t�  and ( )inm tφ� : 
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1 1

2 2

ˆ ˆ(1) (1)
21 1 1 1 21 1 1 1 1

ˆ ˆ(2) (2)
21 2 2 2 21 2 2 2 2 (1)

ˆ ˆ( ) sin ( ) ( ) ( )cos ( )

ˆ ˆ( ) sin ( ) ( ) ( )cos ( )

t t

t t
nm

K e R t p t K e R t p t t

K e R t p t K e R t p t t f

−δ −δ

−δ −δ

− Φ − φ Φ −

− Φ − φ Φ =

��

��
 

 
1 1

2 2

ˆ ˆ(1) (1)
22 1 1 1 22 1 1 1 1

ˆ ˆ(2) (2)
22 2 2 2 22 2 2 2 2 (2)

ˆ ˆ( ) sin ( ) ( ) ( )cos ( )

ˆ ˆ( ) sin ( ) ( ) ( ) cos ( )

t t

t t
nm

K e R t p t K e R t p t t

K e R t p t K e R t p t t f

−δ −δ

−δ −δ

− Φ − φ Φ −

− Φ − φ Φ =

��

��
 

After multiplying the first equation with cofactor (1)
22K  or (2)

22K and second with (1)
21K−  

or (2)
21K− and summing these two equations the system of equations follows: 

 
1

(2) (2)
22 (1) 21 (2)

1 1 1 1 1 ˆ (1) (2) (2) (1)
1 22 21 22 21

( )sin ( ) ( ) ( ) cos ( )
ˆ ( )

nm nm

t

K f K f
R t t R t t t

e p K K K K−δ

−
Φ + φ Φ =

−
��   

 
2

(1) (1)
22 (1) 21 (2)

2 2 2 2 2 ˆ (1) (2) (2) (1)
2 22 21 22 21

( ) sin ( ) ( ) ( ) cos ( )
ˆ ( )

nm nm

t

K f K f
R t t R t t t

e p K K K K−δ

−
Φ + φ Φ =

−
��  (43) 

Solving the obtained subsystems of four nonhomogeneous algebraic equations (41) and 
(43) with respect to the derivatives ( )inmR t�  and ( )inm tφ� , we can write the system of the first-
order differential equations as follows: 

 ( )
1

(2) (2)
(1) 22 21 ˆ2

1 1(1) (2) (1) (2)
1 21 22 22 21

( ) ( )
( ) sin ( )

ˆ ( )
nm

nm nm nmnm t
nm nm

nm nm nm nm nm

f t K f t K
R t e t

p K K K K
δ

−
= − Φ

−
� ; 

 ( )
1

(2) (2)
(1) 22 21 ˆ2

1 1(1) (2) (1) (2)
1 1 21 22 22 21

( ) ( )
( ) cos ( )

ˆ( ) ( )( )
nm

nm nm nmnm t
nm nm

nm nm nm nm nm nm

f t K f t K
t e t

R t p t K K K K
δ

−
φ = − Φ

−
�  

 2

(1) (1)
ˆ22 (1) 21 (2)

2 2(1) (2) (2) (1)
2 22 21 22 21

( ) ( )
( ) sin ( )

ˆ ( )
nmnm nm nm nm t

nm nm
nm nm nm nm nm

K f t K f t
R t e t

p K K K K
δ−

= − Φ
−

� ; 

 2

(1) (1)
ˆ22 (1) 21 (2)

2 2(1) (2) (1) (2)
2 2 21 22 22 21

( ) ( )
( ) cos ( )

ˆ( ) ( )
nmnm nm nm nm t

nm nm
nm nm nm nm nm nm

K f t K f t
t e t

R t p K K K K
δ−

φ = − Φ
−

�  (44) 

where we denoted ˆ( ) ( )inm inm inmt p t tΦ = + φ . 
If we use trigonometrical transformation of mentioned solutions (39) and define four 

more variables like:    

 ( ) ( )( ) ( ) cos ( )i i iA t R t t= φ ; ( ) ( )( ) ( )sin ( )i i iB t R t t= − φ , i = 1,2 (45) 

and integrate the system of equations (44), using the obtained solutions we can rewrite 
the solutions in the following final forms: 
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 (46) 

The solutions (46) are the main analytical result for time functions of forced transver-
sal vibrations of visco-elastically connected double circular plates system, so the solu-
tions for middle surface points displacements in functions of r, ϕ and t are in forms (15) 
where the space coordinate eigen amplitude functions W(i)(r, ϕ), i = 1,2 are in forms (13). 
From the analytical solutions (46), we can conclude that for one mn -family mode 
n, m = 1,2,3,4,...∞, to one eigen amplitude function corresponds two circular damped 
frequencies and corresponding two-frequency time functions T(i)nm(t), i = 1,2, 
n, m = 1,2,3,4,...∞, in the case of free oscillations of the system, and that for forced 
oscillations in those functions contain terms corresponding to different combinations 
(sums and differences) between frequencies of forced external excitations and eigen 
circular damped frequencies.  

Choosing for external excitation periodic forces, we can rewrite the functions 
f(i)nm(t) = h(0i)cosΩit, i = 1,2 in the following forms: 
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where (0 ) ( )( , , ) ( , ) cosi i i iq r t F F r tϕ = ϕ Ω�� ��  are known specific area distributed external transver-
sal excitations along the  upper plate upper contour surface as well as the lower plate lower 
contour surface.  

In the special observed cases of homogeneous double plate system with equal plate 
mass distributions and thicknesses, and considering external excitation only in the upper 
plate we obtained the following solutions: 
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 (47) 

8. NUMERICAL RESULTS  

For numerical experiment and analysis, we take into consideration a homogeneous 
double plate system containing two equal circular plates with radius a = 1[m] and graded 
from steel material. By using Maple and the possibilities of visualizing these numerical 
results, we present them as space surfaces of the plate middle surface during the time, and 
also as time-history diagrams of the plate middle surface points displacements. On the 
basis of numerical results, series of characteristic middle surface forms of coupled plates 
during the time are presented in the Figs. 4, 5 and 6. 

In Fig. 4. characteristic transversal displacements of the middle surface points of 
lower and upper plates are presented in function of r, ϕ and t, in three different time mo-
ments for:  

a) one eigen amplitude function form of oscillations (n = 1, m = 0);  
b) two eigen amplitude function forms of oscillations (n = 0, m = 1 summed with 

forms for n = 1, m = 1) and  
c) three eigen amplitude function forms of oscillations (n = 0, m = 1 summed with 

forms for n = 1, m = 1 and n = 2, m = 1) 
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In Fig. 5. the characteristic transversal displacements of the middle surface points on 
characteristic diameters for lower and upper plates in function of r for ϕj = const at character-
istic forms along time t, three eigen amplitude function forms of oscillations (n = 0, m = 1 
summed with forms for n = 1, m = 1 and n = 2, m = 1) are presented for: three different 
values of the external excitation frequency, when external distributed force is applied to 
upper plate a) 2 2

11 11 aΩ ≈ ω = ω −� ; b) 2 2
21 21 aΩ ≈ ω = ω −�  and c) 2 2

31 31 aΩ ≈ ω = ω −�  
In Fig. 6. characteristic transversal displacements of the middle surface points are pre-

sented: 
6.1: on the series of characteristics diameters and cycles in function of r, ϕ for 

ϕj = const and r = const, at characteristic forms along time t /  
6.2: on the series of characteristics diameters in function of r, for ϕj = const at characteris-

tic forms along time t, for lower and upper plates three eigen amplitude function forms of 
oscillations (n = 0, m = 1 summed with forms for n = 1, m = 1 and n = 2, m = 1) for: three 
different values of the external excitation frequency, when external distributed force is applied 
to upper plate a) 2 2

11 11 aΩ ≈ ω = ω −� ; b) 2 2
21 21 aΩ ≈ ω = ω −�  and c) 2 2

31 31 aΩ ≈ ω = ω −� . 

a)         

b)              

c)               

Fig. 4. Characteristic transversal displacements of the middle surface points of lower  
and upper plates in function of r, ϕ and t, in three different time moments, for: 
a) one eigen amplitude function form of oscillations (n = 1, m = 0); b) two eigen 
amplitude function forms of oscillations (n = 0, m = 1 summed with forms for 
n = 1, m = 1) and c) three eigen amplitude function forms of oscillations 
(n = 0, m = 1 summed with forms for n = 1, m = 1 and n = 2, m = 1) 
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a)  b)  c)  

Fig. 5. Characteristic transversal displacements of the middle surface points on charac-
teristic diameters for lower and upper plates in function of r for ϕj = const at 
characteristic forms along time t, three eigen amplitude function forms of 
oscillations (n = 0, m = 1 summed with forms for n = 1, m = 1 and n = 2, m = 1) 
for: three different values of the external excitation frequency, when external 
distributed force is applied to upper plate  
a) 2 2

11 11 aΩ ≈ ω = ω −� ; b) 2 2
21 21 aΩ ≈ ω = ω −�  and c) 2 2

31 31 aΩ ≈ ω = ω −�  

a) b)  c)  

Fig. 6.1. 

a)  b) c)  

Fig. 6.2. 

Fig. 6. Characteristic transversal displacements of the middle surface points: 6.1: on the series 
of characteristic diameters and cycles in function of r, ϕ for ϕj = const and r = const, at 
characteristic forms along time t ; 6.2: on the series of characteristics diameters in 
function of r , for ϕj = const at characteristic forms along time t, for lower and upper 
plates three eigen amplitude function forms of oscillations (n = 0, m = 1 summed with 
forms for n = 1, m = 1 and n = 2, m = 1) for: three different values of the external 
excitation frequency, when external distributed force is applied to upper plate 
a) 2 2

11 11 aΩ ≈ ω = ω −� ; b) 2 2
21 21 aΩ ≈ ω = ω −�  and c) 2 2

31 31 aΩ ≈ ω = ω −�  
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9. CONCLUDING REMARKS 
The analytical solutions of system coupled partial differential equations in every of 

nm- family of corresponding dynamical free (unperturbed) processes are obtained by us-
ing method of Bernoulli's particular integral and Lagrange's method of constants varia-
tions for solution of forced transversal oscillations.  

From the obtained ordinary differential equations and corresponding analytical solu-
tions for time functions corresponding to one eigen amplitude function mode we can con-
clude that they are uncoupled from other eigen amplitude time functions. 

From the analytical solutions for the case of pure elastic layer between plates, we can con-
clude that for one mn-family mode n, m = 1,2,3,4,...∞, to one eigen amplitude function corre-
spond two circular frequencies and corresponding two-frequency time functions T(i)nm(t), 
i = 1,2, n, m = 1,2,3,4,...∞, in the case of free oscillations of the system, and that for forced 
oscillations these functions contain terms corresponding to different combinations (sums and 
differences) between frequencies of forced external excitations and eigen circular frequencies.  

We can see that integral part, i.e. particular analytical solutions of coupled partial 
differential equations, of derived solutions correspond to the coupled forced and free 
middle surface vibrations regimes, and describe multi-frequency vibrations with frequen-
cies which are different combinations (sums and differences) between frequencies of 
forced external excitations and eigen circular damped frequencies (see solutions (46)). 
These analytical solutions can be used for analyses of possible regimes of resonances or 
phenomena of dynamical absorption. By using Maple program, the visualizations of the 
characteristic forms of the plate middle surfaces through time are presented. 

The obtained analytical and numerical result is very valuable for university teaching 
process in the area of structural system elastodynamics as well as of hybrid deformable 
body system vibrations. 
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TRANSVERZALNE OSCILACIJE NEKONZERVATIVNOG 
SISTEMA DVE KRUŽNE PLOČE 

Katica (Stevanović) Hedrih, Julijana Simonović 

Interes proučavanja iscilacija spregnutih ploča , kao kvalitativno novih sistema, poslednjih 
godina eksponencijalno raste naročito radi izazova teorijskog proučavanja takvih sistema. Kao 
uvod dat je pregled rezultata proučavanja prvog autora iz oblasti transverzalnih oscilacija 
različitih sistema dveju ploča. (pogledati ref-ce. [2-7]). 

Osnovnovni rezultat našeg doprinosa je analitičko rešenje sistema spregnutih homogenih i 
nehomopgenih parcijalnih diferencijalnih jednačina koje opisuju slobodne i prinudne oscilacije 
sistema dve kružne ploče povezane elastičnim ili visko-elastičnim slojem [1]. Ova rešenja su 
dobijena Bernoulli-jevom metodom partikularnih integrala kao i Lagrange-ovom metodom 
varijacije konstanata. Prikazanano je nekoliko slika numeričkog eksperimenta sa slobodnim i 
prinudnim oscilacijam sistema kružnih ploča.  

Dobijeni analitički i numerički rezultati su veoma korisni u procesu univerzitetske nastave iz 
oblasti elastodinamike strukturnih sistema kao i oscilacija hibridnih sistema deformabilnih tela. 

Ključne reči:  spregnuti podsistemi, spregnute dinamike, kružne ploče, hibridni, višefrekventni, 
prinudne oscilacije, Lagrange-ova metoda, analitičko rešenje, numerički 
eksperiment 


