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Abstract. In this paper the postbuckling behaviour of simply supported bars with 
uniform open thin walled cross sections, subjected to a centrally applied compressive 
load is examined. The analysis refers to sections for which the centroid does not 
coincide with the shear centre; hence the bars lose their stability through simultaneous 
bending and torsion. The postbuckling equilibrium paths are established using a simple 
analytic technique leading to the conclusion that the margins of postbuckling strength 
are rather limited. Attention is also focused in the first yielding, in case of bars made of 
ideal elastic – ideal plastic material, occurring at the initial part of the post-critical 
path and associated with the maximum combined normal stress due to axial 
compression, bending and warping. Numerical examples are also presented for various 
types of cross-sections. 
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1. INTRODUCTION 

The use of light-weight and stiff structures is steadily increasing in modem structura1 
design. Thus, thin walled (closed or open) cross sections are extensively used in various 
engineering applications. However, the design of structures composed from thin-walled 
cross-sections poses particular problems in their analysis, which become more severe in 
the case of asymmetric cross-sections, whose centroid does not coincide with the shear 
centre. 

Instability problems of thin-walled sections have been the subject of extensive 
research. An excellent reference is the early classical work presented by Vlassov [1]. 
Reviewing the present state of the art one could refer to the books presented by Chen and 
Atsuta [2] and Trahair [3], in addition to a large number of papers based on linear 
analyses. Moreover, studies concerning the postbuckling behaviour of beams and beam-
columns under transverse loading have been presented by severa1 authors [4-7]. 
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Nevertheless, to the knowledge of the authors, there is a lack of references in the area of 
postbuckling response of bars with asymmetric or singly symmetric thin-walled open 
sections under axially applied thrust [8,9]. 

The main objective of this analysis is to investigate the critical and postcritical 
buckling response of bars consisting of steel cross-sections frequently used in 
engineering practice, such as equal and unequal-leg angles, channels and other 
monosymmetric cross-sections. Particular emphasis is given to presenting a simple – as 
much as possible – and comprehensive analysis. A second objective of the present work 
is the determination, through the initial part of the postbuckling equilibrium path, of the 
ultimate elastic state of the bar related to first yielding. The above postbuckling path is 
established using an easy-to-apply technique presented by Kounadis [10]. 

2. LINEAR ANALYSIS – BASIC EQUATIONS 

Consider the genera1 case of a bar with length l of constant thin-walled open cross-
section subjected to a compressive centrally applied load Ρ. Since the centroid of the 
cross-section C does not coincide with the shear center, the buckling of the bar usually 
occurs through a combination of bending and torsion. If x and y are the principal 
centroidal axes of the cross-section, and xo and yo the coordinates of the shear center S, 
the equilibrium of the bar in a slightly deformed configuration, due to translation and 
rotation of the cross-section, is considered. The translation is defined by deflections u 
(along the axis x) and v (along the axis y) of the shear center S (as well as the centroid 
C). Then the shear center moves from S to S' and the centroid ftom C to C'. The rotation 
of the cross-section about the new position of the shear center S' is denoted by φ and the 
final position of the centroid by C" (Fig. 1). 

 

Fig. l.  Displacements of the shear center (u, ν, φ) and the centroid of an open thin-walled 
cross-section. 
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Equating the internal and the corresponding external bending and torsiona1 moments 
at an arbitrary point of axis z, the system of differential equations of equilibrium, in the 
case of a pin-ended bar, can be written as follows [11]: 
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where ΕΙx and ΕΙy are the bending rigidities about the principal centroidal axes x and y, 
GJ and ECw the torsional rigidity and the warping rigidity of the cross-section 
respectively and A)yx(III 2

o
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Combining eqs (1) one can obtain the following differential equation with respect to φ 
which governs the elastic instability of the bar due to a combination of bending and 
torsion 
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where the prime denotes differentiation with respect to z and  
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Using the shape functions 
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(where vo, uo, φo are the lateral deflections and the angle of rotation at the middle of the 
bar, respectively) which satisfy the boundary conditions 
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one can obtain, for a non trivial solution, the following instability equation [7]  
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denote the critical loads of flexural buckling about the x and y axes and the critical load 
of torsional buckling respectively. Clearly, the smallest value of P, obtained from 
equation (6), is the critical instability load for the case in which instability occurs via 
combined bending and torsion. It can be shown [11] that eq. (6) has three positive roots, 
the smallest of which (critical load) is smaller than Px, Py and Pt. 

3. NON LINEAR - POSTBUCKLING ANALYSIS 

This section deals with the discussion of the nature of the critical state and the 
establishment of the initial part of the postbuckling equilibrium path. To this end a more 
accurate relationship for the curvature is used due to which the first and the second of 
eqs. (1) can be written as follows [6]: 
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eqs.(8) can be written 
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Following the approximate analytic technique developed by Kounadis [9,10] for solving 
non linear boundary-value problems the arbitrary (but satisfying the boundary conditions) 
functions (4) are introduced in the second term of eqs. (9) which can be expressed as 
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where 
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Taking into account the boundary conditions 
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the integrals of eqs. (10) are 
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Integrating once the third of eqs. (1) and setting into the second term the expressions 

of 
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u (ξ) from eqs. (13) one can take 
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From eq. (14), with the aid of the boundary conditions φ(ο)=φ(1)=0, results the 
following function for the angle of rotation 
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The application of eqs. (13) and (16) for ξ = 0.5 results in the following system of 
equations 
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eqs. (17) can be transformed as 
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With the aid of this system one can determine numerically, for each value of the di-
mensionless load β2, the corresponding values of ov , ou , φο and establish the respective 
equilibrium paths. It is evident that the trivial solution ov =0, ou =0, φο=0, which repre-
sents the fundamental equilibrium paths, satisfies eqs. (19). The intersection of the fun-
damental path with the non-linear postbuckling path, related with eqs. (19), corresponds 
to the critical bifurcation state. 

4. APPLICATION TO ANGLE CROSS-SECTIONS 

(a) Unequal leg angles 

The analysis presented above will be applied to the case of a pin-ended bar with an 
unequal leg angle cross-section of uniform thickness t (Fig. 2) in which x, y are the 
principal axes. Assuming b1<b2 and t<<b1 eq. (6) can be written, after some elaboration, 
in the form: 
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where Ic  = Ix + Iy. 
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The coordinates of the shear center are given by the relations: 
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where l/bb 11 =
−

, l/bb 22 =
−

. 
The postbuckling equilibrium paths can be established using eqs. (19). 
In Fig. 3 the variation of the dimensionless critical load β2 versus 1b  is presented for 

steel cross sections (G/E = 2.6), various values of 2b  and t  = 0.05, 0.10 ( t  = t/l). 
In Fig.4 the variation of the dimensionless loads yP  and tP  ( yP =Py/P, tP = Pt/P) 

against 1b  is shown for two values of the dimensionless thickness t .  
In Fig. 5 an example of a postbuckling equilibrium path (β2 vs. ov ) is established 

using eqs. (19), for characteristic values of 1b , 2b , t. 

 
Fig. 2. Unequal-leg angle cross-section. Geometrical data. 
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Fig. 3. Variation of the dimensionless instability load β2 vs 1b  for a bar with an 

unequal leg angle cross-section and various values of 2b  and t . 

 
Fig. 4. Variation of yP  and tP  against 1b  for a bar with an unequal leg angle  

cross-section and various values of 2b  and t . 

 
Fig. 5. Postbuckling equilibrium path for a bar with unequal-leg angle cross-section 

under centrally applied axial load 
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From the above plots the following remarks can be stated: 

(a) the critical instability load P (associated with simultaneous bending and torsion), is up 
to 1.6 times smaller than the smaller of Py and Pt.. 

(b) for thick cross-sections ( t  = 0.20) and for slender bars ( 1b <0.02) the critical load of 
flexural-torsional buckling, practically coincides with the critical (Euler) buckling 
load. 

(c) for thick cross-sections ( t  = 0.20) and bars with small slenderness ratio, P practically 
coincides with the critical load of torsional buckling for 1b >0.08 (when 2b =2.00), for 

1b >0.11 (when 2b =1.50), and for 1b >0.15 (when 2b =1.00). 

(d) for thin cross-sections ( t  = 0.05) the above coincidence is observed when 1b >0.05 

(for 2b  > 1.5) and when 1b >0.08 (for 2b =1.00). 

(e) the critical bifurcation state is related to a stable and symmetric branching point. The 
bar develops postbuckling strength, therefore is not sensitive to initial imperfections. 
Nevertheless the postbuckling paths are very shallow, so the margin of the 
postbuckling strength is limited. 

(b) Equal leg angles 

For the specific case of equal leg angles (b1=b2) the variation of the dimensionless 
critical stress σcr/E of lateral torsional buckling (according to a simultaneous flexural and 
torsional configuration) vs the thickness t  for two different values of the width b  is 
presented in Fig.6. The above critical stress is compared with the level of the 
corresponding critical stress of flexural buckling (σx/E). From these diagrams one could 
conclude that the buckling according to a simultaneous flexural and torsional 
configuration can be critical for short elements and steel qualities with a high value of the 
yield stress (high strength steels). For instance in the case of b  = 0.10 (Fig. 6b) the 
flexural-torsional buckling is critical (compared with pure flexural or torsional buckling) 
for t <0.11 i.e. for the currently used area of thickness. For more slender bars the 
flexural-torsional mode of buckling is critical for relatively small values of the thickness 
(Fig. 6a), which are not of practical interest because local buckling phenomena govern 
the behaviour and the strength of the bars. 

In Fig. 7 the postbuckling equilibrium path (β2 vs ou ) for equal-leg angle with 

b =0.10 and t =0.10 is presented. The remark concerning the shallowness of this path is 
also valid. 
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Fig. 6. Dimensionless axial critical stress σcr/Ε of lateral-torsional buckling vs 

thickness t  of the equal-leg angle cross section for various values of the width 
b  of the angle ( b =0.05, 0.10) 

 
Fig. 7. Initial postbuckling path β2 versus ou of a simply supported bar with equal leg 

cross-section, under simultaneous bending and torsion due to axial load. First 
yielding point 

(a) 

(b) 
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5. ELASTIC LIMIT STATE 

Eqs. (19) are valid provided that the bar behaves, in the postbuckling range of 
behaviour, elastically. The present section deals with the onset of first yielding occurring 
at the initial postbuckling path. 

Clearly, first yielding occurs when the maximum normal stress in the cross-section 
becomes equal to the yield stress of the material of the bar. This stress is given by 

 σmax = σy = σο + σby + σw (23) 

where σο=P/A is the uniform stress due to axial compression; σby= M/Zy=Puo/Zy is the 
maximum bending stress (Zy the elastic section modulus about the y axis) and σw is the 
maximum normal stress due to warping. 

The normal warping stress σw in Eq. (23) is defined as [12] 
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The distances rs and rn in Eq. (25) are shown in Fig. 8, representing an open thin-
walled cross-section, where S is the shear center and A (being the intersection of the axes 
s and n) is an arbitary point of the mean line (of the cross-section) of length s, 1w is the 
mean value of wl and n the distance from the mean line to any point on the cross-section. 
For thin-walled open sections the maximum value of n is t/2. 

 
Fig. 8. Distances rs and rn related to the warping constant of a thin walled cross-section 

Applying the above in the case of an equal-leg angle we can, after some elaboration, 
obtain 
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Concerning the normal stress due to warping for the considered cross section rs = 0, 
0w1 = and therefore  

 2/bt)z(Enr)z(Ew)z(E)z( n1w φ′′=φ′′=φ′′=σ . (27) 

At the mid-height of the bar, according to eqs. (4), 22 l/)2/1( πφ=φ ′′ ο . Hence the 
maximum normal stress due to warping is 
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Using eqs. (26) and (28), eq. (23), the condition corresponding to the first yielding of 
the bar, can be finally expressed as 
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With the aid of the above equation (29), in conjunction with eqs. (19), the level of the 
external loading β2, related to the onset of first yielding of the bar can be determined. 
Using the geometrical data of the cross section corresponding to Fig. 7 the first yielding 
point is shown on the postbuckling equilibrium path (Fig.7). 

As one can remark the first yielding point is very near to the critical bifurcational 
point. Therefore, as it is already sited, eqs. (19) correspond only to the initial part of the 
postbuckling path and are appropriate to determine the nature of this bifurcation. 

6. APPLICATION TO OTHER CASES OF CROSS-SECTIONS 

(a) Channel rolled cross-section 

Applying the linear analysis, previously presented, in the case of a channel rolled 
cross-section the variation of the dimensionless critical stress of flexural - torsional 
buckling σcr/E as a function of: the dimensionless thickness b/tt =  (b the width of the 
flanges), the width h/bb =  (h the height of the cross-section) and the height h = h/ℓ is 
presented in plots (Fig.9). In the plots the comparison with the critical load of flexural 
buckling (straight lines) is also shown. 

Then for the case of a channel cross-section, ox = 0, the system of eqs. (19) for establishing 
the postbuckling equilibrium path is simplified. Figure 10 shows such a path (β2 vs φο) for a 
channel with h =0.05, b =0.50 and t =0.025. In the same plot the point E, corresponding to 
the elastic limit state, is placed on the above equilibrium path with the aid of eq. (23). 

(a) Monosymmetric I - cross-section 

This example is related to the simply supported beam with the monosymmetric cross-
section shown in Fig. 11a. The cross section is associated with the following geometrical 
data and elastic constants: 

Ix = 72808 cm4, Iy = 5076 cm4, A= 165 cm2, xo=0, yo=15.49 cm, Io=117474 cm4, 
J = 178.5 cm4, Cw=1352000 cm6, E=21000 kN/cm2, G=8077 kN/cm2,  
ρx = 1.5 . 10-5, ρy = 2.1617 . 10-4, µ=5.7784 . 10-4, λ=62.565 
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From the linear analysis it follows that Pcr = 739.17 kN and for the dimensionless 
critical load β2=39522. With the aid of eqs. (19) the postbuckling equilibrium path (β2 vs 

ou ), shown in Fig. 11b, is established.  

 
Fig. 9. Dimensionless axial critical stress of flexural-torsional buckling vs thickness t  

of the channel cross-section for various values of b , h . Comparison with the 
critical dimensionless stress of flexural buckling. 

(a) 

(b) 

(c) 
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Fig. 10.  Initial part of the postbuckling path (β2 vs οϕ ) of a simply supported bar with 

a channel cross-section, under simultaneous bending and torsion due to axial 
compression. First yielding point. 

 
Fig. 11. Simply supported steel bar with monosymmetric I-section and initial 

postbuckling path β2 vs ou  

CONCLUSIONS 

The most important conclusions of the present study are the following: 
(a) A simple and efficient technique for establishing the initial part of the 

postbuckling equilibrium path is presented, for the case of axially compressed bars 
with open thin-walled cross-sections having one, or without, axis of symmetry. 

(b) The critical instability state is related to a stable and symmetric bifurcation point. 
(c) The postbuckling equilibrium paths are very shallow and therefore the postbuckling 

strength is very limited. 
(d) Considering bars made of ideal elastic - ideal plastic material, their elastic limit 

state associated with first yielding can also be determined. 
(e) First yielding is related to the maximum normal stress in the middle cross-section 

of the simply supported bar, being equal to the yield stress of the bar's material. 
The above maximum normal stress is determined as a function of the uniform 
stress due to axial compression, of the maximum bending stress and of the maxi-
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mum normal stress due to warping. One should notice the importance of the nor-
mal stress due to warping, which can reach, in some cases, an appreciable percent-
age of the total normal stress. 

(f) Due to the shallowness of the postbuckling path first yielding takes place near to 
the critical state. 

(g) Areas of the geometrical data of bars with unequal-leg angle cross-section for 
which the critical instability load practically coincides with the critical loads of 
pure flexural or pure torsional buckling, are indicated. 

(i) Areas of the geometrical data of bars with channel or equal-leg angle cross-
sections for which the lateral-torsional buckling configuration is critical are also 
presented in graphs. 
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ANALIZA PONAŠANJA SAVIJENIH CENTRIČNO PRITISNUTIH 
TANKOZIDNIH GREDA OTVORENIH POREČNIH PRESEKA 

G.Ι. Ioannidis  

U radu je analizirano ponašanje savijenih tankozidnih greda konstantnog poprečnog preseka 
pritinutih centralnim opterećenjem. Analiza se odnosi na slučaj kada se centar smicanja ne 
poklapa sa težištem poprečnog preseka, i greda gubi stabilnost u uslovima spregnutih naprezanja 
na savijenje i uvijanje. Putevi stabilnosti grede u savijenom stanju su odredjeni korišćenjem 
jednostavnih analitičkih tehnika koje dovode do zaključaka da su u graničnim slučajevima naponi 
ograničeni. Pažnja je usmerena na prvo tečenje, u slučaju da je greda načinjena od idealno 
elastičnog-idealno plastičnog materijala, koje se javlja u početnom delu post-kritičnog puta i 
pridružuje se maksimumu kombinacije normalnog napona usled aksijalne kompresije, savijanja i 
uvijanja. Numerički primeri su predstavljeni za različite tipove poprečnih preseka. 

Ključne reči:  ponašanje savijene tankozidne grede, otvoren poprečni presek, centar 
smicanja, centar savijanja, stabilnost, post-kritični put, idealno elastični, 
idealno plastični material. 


