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Abstract. We consider some concepts of causality between σ-algebras and between 
stochastic processes. Then, we give a generalization of a causality relationship "G is a 
cause of E within H" which was first given by Mykland [4] and which is based on 
Granger's definition of causality [1]. 
In the second part we apply the results to systems of stochastic differential equations. 
More precisely, we give conditions for weakly uniqueness of the solution of some 
stochastic differential equations.  
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1. INTRODUCTION AND NOTATION 

The study of Granger causality has been mainly preocupied with time series. We shall 
instead concentrate on continuous time processes. Many of systems to which it is natural 
to apply tests of causality take place in continuous time. For example, this is generally the 
case within economy. 

A σ-stream is a family (Ft)t∈T of σ-algebras (over a given set Ω) so that T (the time 
axis) is a subset of the real numbers and  

 s ≤  t  imply ts FF ⊂  for all s, t ∈  T (1.1) 

Inclusion between σ-streams is given by 

 TttTtt GF ∈∈ ≤ )()( '  if  T = T ' and tt GF ⊃ , Tt ∈ . (1.2) 

A probabilistic model for a time-dependent system is described by (Ω,F,Ft,P) where 
(Ω,F,P) is a probability space and (Ft)t∈T is a "framework" σ-stream, i.e. Ft are all events 
in the model up to and including time t (and Ft is a subset of F) and every σ-stream 
(Gt)t∈T "contained in" (Ω,F,Ft,P) satisfies (1.2). Whether or not sup T = +∞ or inf T = −∞, 
we define 

tTt FVF ∈∞ = ,       tTt FF ∈∞− = ∩ . 
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Given a measurable space (Ω,F) the σ-algebra induced by the functions Xu, u ∈ U is 
the smallest σ-algebra with respect to which all the Xu are measurable. The σ-stream 
induced by the stochastic process 

TttX ∈)(  is given by Tt
X

tF ∈)(  where 

},,{ tuTuXFF u
X

t ≤∈=  for all Tt ∈ . 

A σ-stream may be introduced by several processes, e.g. 
Y

t
X

t
YX

t VFFF =, . 

A stochastic process (Xt)t∈T is adapted to the σ-stream (Ft) if they have the same time-
axis and if all Xu, u ≤ t are F-measurable, i.e. if 

)()( t
X

t FF ≤ . 

The notation (Xt,Ft) means that (Xt) is (Ft)-adapted. 
If Mi, i = 1,2,3 are sub-σ-algebras of F in a probability space (Ω,F,P), conditional 

independence of M1 and M2 given M3 is denoted by 

321 MMM ⊥ . 

In a probability space (Ω,F,P) we define 

}1or,0)(,:{0 =∈= APFAAF  and 0FMVM =  

where M is sub-σ-algebra of F. Stochastic equivalence (or equality P-a.s.) between σ-
algebras is given by MMsaPMM ′=⇔−′= .).( , and note that F(X) and F(Y) are 
equivalent if X and Y so are. 

Equivalence between σ-streams is given by 

.).(:.).)(()( saPGGTtsaPGG tttt −′=∈∀⇔−′=  

and stochastic processes (Xt) and (Yt) are equivalent when Xt and Yt are equivalent for all t. 

Definition 1.1. ([4]) Let the system (Ω,F,Ft,P) be given, let M1 be a σ-algebra 

∞⊂ FM1 . 

A σ-algebra M2 is a sufficient cause of M1 at time t (relative to (Ω,F,Ft,P)) iff 

tFM ⊂2  and  21 MFM t⊥ . 

 In this way we can describe the causes of single events (M1 = {Φ,Ω,A,AC}) and sets 
of events. Note that if M1 ⊂ Ft, then M1 is a sufficient cause of M1 at time t. 

The following notion of causality, in terms of Hilbert spaces, was given in [5] and 
represents a generalization of the definition from [4]. 

Definition 1.2. In a measurable space (Ω,F ) let (Ft), (Gt) and (Ht) be σ-streams of 
sub-σ-algebras of F, and let P be a probability measure on F. We say that (Gt) causes (Ht) 
within (Ft) relative to P or 
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PFGH ttt );();()( Κ  
if 
(Gt) ≤ (Ft), H<∞ ⊆ F<∞ and if Gt is sufficient cause of H∞ relative to (Ω,F,Ft,P) for every 
t ∈ T , T being the time-axis of the σ-streams, i.e. if 

 tt GFH ⊥∞    for all   Tt ∈ . (1.3) 

It is easy to see that (2) may be formulated as 

ttu GFH ⊥    for all   Tut ∈, . 

The essence of (1.3) is that all information about (Ht) enters the system (Ω,F,Ft,P) via 
(Gt). 

Definition 1.3. A σ-stream (Ht) is its own cause (within (Ft)) (relative to P) if 

PFHH ttt );();()( Κ . 

These definitions apply to stochastic processes as if we were talking about the 
corresponding induced σ-streams. For example, (Xt,Ft) is its own cause if (Ft

X) is its own 
cause within (Ft). In addition, (Xt) is caused by itself and by (Yt) if 

)();()( ,
t

YX
t

X
t FFF Κ . 

The interpretation of Granger-causality is now that "Y does not cause X'' if  

)();()( ,YX
t

X
t

X
t FFF Κ . 

Proposition 1.1. [4] In a probability space (Ω,F,P) let (Ft) and (Gt) be σ-streams and 
let {(Xt

(n))} be a stochastic process satisfying Xt
(n) → X,n → ∞ in probability, for every 

t ∈ T and  
)();()( )( FGKX t

n
t  for every n, 

(T being the time axis). Then (Xt)K(Gt);(F) holds for process (Xt). 

2. APPLICATION TO THE STOCHASTIC DIFFERENTIAL EQUATIONS 

(I) In this section T = [0,t0], C d is the space of all continuous functions T → R d, 
Bt(C d) is the σ-algebra on C d making the functions εu : C d → R, 

uu xx =ε )(  
measurable for tu ≤ , 

)()(
0

d
t

d CC Β=Β  

)()( d
utu

d CC Β=Β >+ ∩ . 

A causal functional at is a (B+(C d)) -adapted process on C d. 
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A (d-dimensional) stochastic process (Xt) which is continuous (i.e. whose sample-
functions are continuous (P-a.s.)), induces a measure µX on B(C d), 

})({)( BXPBX ∈ω=µ , 

X(ω) the sample-functions for given ω. 

Let (Ω,F,P) be a probably space, F-complete, and (Xt,Ft)t∈T be a continuous d-
dimensional stochastic process, F0 complete. Let µX and µW be the measures induced by 
(Xt) and a d-dimensional Wiener process (Wt), respectively. Consider the following 
statements: 

a) There is a (d-dimensional) Wiener process (Wt,Ft) and a measurable process (αt,Ft) 
 satisfying 

 t

t

st WdsX +α= ∫
0

 (P-a.s.) for every t ∈ T (2.1) 

∞<α∫ ds
t

s ||
0

0

  (P-a.s.) 

|.| is the Euclidian norm. 

b) µX << µW, i.e. µX  is absolutely continuous with respect to µW. 

c) ∫ ∞<αα dsss
*         (P-a.s.). 

d) (αt) is of the form (P-a.s.) 
)(xatt =α  a.e. in T 

  αt being a causal functional. 
e) (Xt) is its own cause within (Ft)t∈T . 

Lipster and Shiryayev (1977) studied the relationships between a), b) , c) and d) using 
Girsanov's theorem. This picture is completed by the statement e) as Proposition 2.1 will 
show. First we define some new statements: 

(i) b) and e) 
(ii) a) and b) and e) 
(iii) a) and c) and e) 
(iv) a) and b) and d) 
(v) a) and c) and d). 

Proposition 2.1. The statements (i)-(v) are equivalent. If they apply, the representa-
tion (2.1) is unique, i.e. if for every t ∈ T 

t

t

st WdsX ˆ
0

+β= ∫  (P-a.s.) 

),ˆ( tt FW  being a Wiener process and ),( tt Fβ  a measurable process, then  

 1)everyforˆ( == tWWP tt , (2.2) 
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 1}everyalmostfor{ =β=α tP tt . (2.3) 

Proof. If, for every t, 

∫ −=α−β
t

ttss WWds
0

ˆ)(   (P-a.s.) 

the martingale property of tt WW ˆ−  implies (2.2) and (2.3).  
The equivalence between iv) and v) follows from Theorem 7.5 and note 7.2.7 in [2] 

and the implication from iii) to ii) follows from Theorem 7.4 in the same book. As ii) 
implies i) trivially, it remains to show that i) implies v) and that v) implies iii). 

To show that i) implies v) assume first the existence of a (Ft)-adapted (d-dimensional) 
Wiener process. In the presence of b), Theorem 7.11 from [2] guarantees the 
representation Xt = ∫0 

t
αsds + Wt (P-a.s.) for every t ∈ T, for d = 1, with (Wt,Ft

X) as a 
Wiener-process. (Wt,Ft

X) being a Wiener process and (Ft
X) being its own cause within (Ft), 

(Wt,Ft) is a Wiener process and the implication is proved in this case. In general, we 
extend the probability space and the framework σ-stream to include a Wiener process. As 
(Wt) in the representation from a) is adapted to (Ft

X) and therefore to the original 
framework σ-stream, the extension can be abandoned after finding (Wt). 

We prove now that v) implies iii). Assume that there are (d-dimensional) Wiener 
process (Wt,Ft

X) and causal functional at of the form )(xatt =α  such that  

t

t

st WdsX +α= ∫
0

 (P-a.s.) for every Tt ∈ , ∞<α∫ ds
t

s ||
0

0

 (P -a.s.) and ∫ ∞<αα dsss
*  (P-a.s.). 

 For n = 1,2,..., for x ∈ C d, set  

∫ ≥∧∈=τ
t

ss
n ndsxaxaTttx

0

*)( })()(:inf{)( , or, 0
)( )( txn =τ  if ∫ <

0

0

* )()(
t

ss ndsxaxa . 

By Lemma 1.11 from [2], τ(n) is a stopping time. Thus 

)}({
)(

)()()( xtt
n

t nIxaxa τ≤=  

is a causal functional (I is the indicator function). Thus the process 

∫ +=
t

t
n

s
n

t WdsXaX
0

)()( )(  

is adapted to )( X
tF . Set 

})()(
2
1)(exp{

0 0

0

)(*)(

0

*)()( ∫ ∫−−=
t

n
s

n
s

t

s
n

s
n dsXaXadWXaz  

By Corollary 7.2.1 in [3], 
1}{ )( =nzE  

Accoring to multidimensional Girsanov's theorem it follows that (Xt
(n),Ft) is a Wiener 

process under measure )(~ nP , given by  
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dPzPd nn )()(~
= . 

In particular, (Xt
(n)) is its own cause relative to )(~ nP , and as (Xt

(n)) is adapted to (Ft
X), 

)()( ~;; n
t

X
t

n
t PFKFX . 

It is easy to see that  
)()( )()()( nn

t
n

t XaXa = , 
thus )(nz  is 

)( nXF∞ -measurable. Now, it follows that 

PFKFX t
X

t
n

t ;;)( . 

As Xt
(n) converges to Xt for every t, from Proposition 1.1, it follows that (Xt) is its own 

cause within (Ft) relative to P. 

 (II) The stochastic differential equation of unknown d-dimensional process Xt, t ∈ T 
with the initial value η given by 

 tttt dWXbdtXadX )()( +=  (2.4)    

η=0X  

is well defined when the following elements are given: dimension d (that of (Xt) and  
(Wt)), causal functionals at (d-dimensional vector) and bt(d × d matrix) and d-dimensional 
distribution function Fη. 

In this case the object (Ω,F,Ft,P,Wt,Xt) is said to be a weak solution of (2.4) if 
i) (Ω,F,Ft,P) is a probability system with time axis of the form T = [0,t0], with (Ft) 

right continuous and with F and F0 complete, 
ii) (Wt,Ft) is a Wiener process, 
iii) (Xt) is a continuous adapted process, 
iv) X0 has Fη as its cumulate distribution function, 

v) ∞<∫ |)(|
0

0

dsXa
t

s  and  ∞<∫ 2

0

|)(|
0

dsXb
t

s   both P-a.s.),  (2.5) 

vi) s

t

s

t

st dWXbdsXaXX ∫∫ ++=
00

0 )()(       (P-a.s) 

the last integral being a classical stochastic integral over (Wt), which exists since bt is 
causal and because of (2.5). 

For given d, at, bt and Fη, the solution of (2.4) is weakly unique if for any two 
solutions (Ω i,F i,F i

t,P i,W i
t,X it), i = 1,2, of the system, the induced measures µX1 and µX2 

coincide. 
The Girsanov's theorem is instrumental in showing the following result. 

Proposition 2.2. If, for every weak solution (Ω,F,Ft,P,Wt,Xt) of (2.2), Xt is caused by 
itself and by Wt within Ft, then the solution is weakly unique. 

Proof. Let (Ω i,F i,F i
t,P i,W i

t,X it), i = 1,2, be two weak solutions of (2.2). Without 
loosing of generality we assume that Ω1 ∩  Ω2 = Φ and 
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21 ΩΩ=Ω ∪  
},:{ 21 FBFABAF ∈∈∪=  

},:{ 21
ttt FBFABAF ∈∈∪=  

],),()([
2
1)( 21 FBFABPAPBAP ∈∈+=∪  

22

11

),(
),(

{)(
Ω∈ωω
Ω∈ωω

=ω
t

t
t W

W
W  

22

11

),(
),(

{)(
Ω∈ωω
Ω∈ωω

=ω
t

t
t X

X
X . 

It is easy to see that (Ω,F,Ft,P,Wt,Xt) is a weak solution of (2.2). Set 

2

1

2
,1

{)(
Ω∈ω
Ω∈ω

=ωj . 

X0 and j are independent. 
Assume that Xt is caused by Ft

X,W. Then F∞
X is conditionally independent of F0 given 

F0
X (since W0 = 0), and since X0 and j are independent, this implies that F∞

X is independent 
of j. Consequently, for A ∈ B(C d), P(X ∈ A | j) is constant (P-a.s.), and as 

)())(|( AXPjAXP i ∈=ω∈  

for almost all (P-a.s. and P i-a.s.) ω ∈ Ωi 

)()( 21 AXPAXP ∈=∈ . 
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NEKI MODELI UZROČNOSTI I STOHASTIČKE 
DIFERENCIJALNE JEDNAČINE 

Ljiljana Petrović 

U radu se razmatraju neki koncepti uzročnosti izmedju σ-algebra i između stohastičkih procesa. 
Zatim se navodi generalizacija relacije uzročnosti “G je uzrok E u okviru H”, koju je prvi dao 
Mykland [4] i koja se zasniva na Granger-ovoj definiciji uzročnosti [1]. U drugom delu rada rezultati 
se primenjuju na sisteme stohastičkih diferencijalnih jednačina. Preciznije, daju se uslovi za slabu 
jedinstvenost rešenja nekih stohastičkih diferencijalnih jednačina. 

Ključne reči:  σ-algebra, uzročnost, slabo rešenje stohastičke diferencijalne jednačine.. 

 


