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Abstract. In many application oriented researches the initial coefficients characterizng a 
discontinuity of the governing differential equations (for instance, caused by the dry friction) 
are often substituted by the continuous functions (approximations). One of the effective 
methods to use the described methodology is that related to introducing a formal small 
(perturbation) parameter, and then to carry out the successive iterations due to this 
parameter. In this paper we show, that a combination of the mentioned iterative  procedure 
with the Padé approximants leads to a drastic decrease of the number of iterations.  

Key words: iterative processes, Padé approximations. 

1. INTRODUCTION 

Kleczka and E. Kreuzer [1, 2] proposed the following iterative procedure dealing with 
differential equations possessing discontinuous coefficients. As it is known the Heaviside 
function H(x)  
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can be presented in the following form: 
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Increasing the parameter c one may better approximate the function H(x). For enough 
large values of c one obtains (practically) exact values of the function being 
approximated. It is clear that it is much easier to work with the smooth coefficients 
instead of the discontinuous ones, when in addition one of the numerical algorithms is 
applied. In this case a key problem is focused on decreasing a number of iterations along 
with the simultaneous guarantee of a high accuracy of the solution being sought. 
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In this paper we show that one can apply the Padé transformation in order to realize 
the mentioned requirements [3-5]. 

2. INCREASING THE CONVERGENCE OF THE ITERATIVE PROCESSES  
USING PADÉ APPROXIMANTS 

The effectiveness of application of the Padé approximants essentially depends on the 
occurrence of high order terms of an asymptotical process. Although these principal diffi-
culties can be omitted using the symbolic computations, this problem in general still 
remains open. Much easier is to apply the Padé approximations to the iterative processes. 
Let us assume that the following iterative process is applied 

 n
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For ε = 0 one gets u ≈ u0, whereas for ε = 1 one obtains u ≈ un. On the other hand, the 
series (2) can be presented as the following rational function due to the Padé approxima-
tion of the form 
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where: m + l = n. 
Therefore for ε = 1 
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For m = l the diagonal approximation is obtained. Many examples (see [3-5]) confirm 
a high accuracy and the efficiency of the described method. 

3. APPLICATION OF THE PADÉ APPROXIMATIONS 

First we consider an application of the Padé approximation to the mentioned function 
H(x), i.e. let us consider the function 

),arctan(2),( cxcxHc π
=  

where: Hc(x,∞) = H(x). Giving values of c as the series of c1 < c2 < c3 < …, one gets the 
iterative series of Hci = H(x,ci), and the Padé approximations can be applied. 

The appropriate program using the "Mathematica" package and the exemplary results 
are presented in Appendix A. 

In Figure 1 results of the described method are presented. It is clear that Padé scheme 
allow for essential approximation improvement of a being the sought function. 
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Fig. 1. Normalized inverse tangent function for different values of c (Hc0, Hc1, Hc2, Hc3 for 
c0 = 10, c1 = 15, c2 = 20 and c3 = 25) and Padé approximants HP[m,l] for different m 
and n values corresponding to (3): (a) m = 0, l = 1; (b) m = 1, l = 1;  (c) m = 0, l = 2 

We consider now the second example described in the reference [1]. 
A simple mechanical model of the planar submerged inverted double pendulum is 

represented in Fig. 2. Applied forces acting at the bars are buoyancy forces, gravity 
forces, and hydrodynamic forces. The excitation is characterized by the angular 
amplitude a and the frequency ω, and it is transmitted to the lower bar by means of a 
torsional spring. 

The upright position of this two-degrees-of-freedom rigid-body system is a stable 
equilibrium position due to the buoyancy forces acting at the bars. For the mathematical 
description, the absolute angles α1 and α2 and the absolute angular velocities 1α  and 2α  

are chosen as state variables, which are summarized in the state vector Tx ][ 2121 αααα= . 
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Fig. 2. Mechanical model of a double pendulum 

According to Morison's formula, the hydrodynamic damping-force component F act-
ing at an infinitesimal slice dl of the bar takes the form 
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where u(x) is the normal or tangential velocity component of the surrounding current 
relative to the bar. 

In reference [1] the iterative procedure to trace bifurcation and stability of the periodic 
solutions of the inverted double pendulum is reported. 

Applying  the procedure for a stable one-periodic solution of the double pendulum, a 
symmetry-breaking pitchfork bifurcation with critical eigenvalue λ* = +1 and a period-
doubling flip bifurcation with critical eigenvalue λ* = −1 can be detected. On the basis of 
the symbolically given map, a very accurate estimation of the bifurcation parameter val-
ues a* of the excitation amplitude a can be obtained. An example of the iteration se-
quence for the pitchfork bifurcation is given in Table 1. 

Table 1. Iteration sequence for pitchfork bifurcation parameter values 

Iteration a* λ* 
  0 
  1 
  2 
  3 
  4 
  5 
10 

0.1000000 
0.1407018 
0.1605386 
0.1617132 
0.1614095 
0.1614944 
0.1614761 

0.48912898 + 0.32400075 j
0.84036745 
0.99358588 
1.00161352 
0.99954580 
1.00012418 
0.99999996 
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In spite of the authors’ remark about a very good convergence of the numerical 
iteration sequence it is seen that they have an oscillation-like character. We address two 
following remarks concerning the results included in the Table 1. First, it is seen that the 
number of iterations is rather small to get a stationary process. Second, it is not known if 
in principle this process is expected to be a stationary one. These two remarks indicate a 
need for the application of  the Padé approximations. 

In order to apply the Padé approximations the appropriate program using "Mathe-
matica" is presented (together with obtained results) in Appendix B. (Note, that because 
of the space limitations some of the long analytical expressions have not been shown). A 
general idea of the algorithm is to take the successive series of the iterations a0,a1,...,a5  
which corresponds to pa[0], and then a1,a2,...,a5 which corresponds to pa[1], and so on. 
The same holds for the λi series (i = 0,1,...,5) (see Table 1). For instance, for pa[0] we 
have 21 possible Padé approximants, and so on (see Appendix B). 

It is obvious that for PA[3,1], PA[3,2] and PA[4,1] the results are extremely close to 
those obtained after the 10th iteration step of the numerical procedure. 

In addition, we can obtain a very good approximation even for a few first values of  
ai. For instance, for a1 − a5 we get PA[2,1] = 0.16147189, PA[2,2] = 0.16147587 and 
PA[3,1] = 0.16147585. For a2 − a5 we get PA[1,1] = 0.16147189, PA[1,2] = 0.16147585 
and PA[2,1] = 0.16147585. For a3 − a5 we obtain PA[1,1] = 0.16147585. 

A similar observation holds for λi. We would like to point out only the remarkable 
values of PA[3,1] = 0.99996931, PA[3,2] = 0.99999786 and PA[4,1] = 0.99999776 (for 
pa[0]); PA[2,1] = 0.99996931, PA[2,2] = 0.99999786 and PA[3,1] = 0.99999776 (for 
pa[1]); PA[1,1] = 0.99996931, PA[1,2] = 0.99999778 and PA[2,1] = 0.99999776 (for 
pa[2]); and PA[1,1] = 0.99999776 for pa[3]. The approximations are valid for both real 
and the complex values. 

Obtained results lead to a conclusion that the advantages of the Padé approximants are 
very high. Using only a few first iteration values of ai, we can get practically the same 
values as those obtained after ten steps of iterations! It means that one integrates 
numerically a few time less the investigated ODEs in a whole interval of the period of a 
periodic solution being investigated. It causes a dramatic decrease of the computational 
time during the integration of the governed differential equations. 

Similar approaches have been applied also to the analysis of the complex system of 
ODEs governing the vocal cords oscillations and during accuracy improvement of  the 
Lorenz homoclinic orbit parameters determination [6, 7]. 

4. ALTERNATIVE APPROACHES 

An alternative approach to the Kleczka-Kreuzer method can be realized in the fol-
lowing manner. The discussed discontinuous coefficients can be presented in the form of 
the Fourier series. Then these coefficients can be presented in the form of the trigonometric 
Padé approximations, which provide its effective and smooth approximation [8, 9]. 

The second alternative approach is based on increasing the number of the Fourier 
terms, and then on applying the Padé approximations to the obtained iterative sequence of  
the sought functions. 

Finally, we described the third approach. Let us assume that a function being sought 
u(x,ε) can be approximated by the following series 
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Let us assume that in addition we have the numerical value of the solution 
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Therefore, for given values of ε, i.e. ε1, ε2, ε3 one can write [10] (a generalization for 
large number of a series can be easily carried out): 
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The sought ui (x) can be obtained from (5), and then a typical Padé approximation 
procedure can be applied. In addition, the second order Padé approximation can be 
applied [4], where the coefficients of the series (3) can be defined by uml . 

5. CONCLUDING REMARKS 

In this paper we have shown that Padé approximations are very effective tools to im-
prove accuracy of both the analytical und the numerical iterative processes. Among 
others we have focused on two important aspects of the discussed problem. First, we 
must emphasize that the Padé approximants for the sequence m − 1(P[m −1]), m(p[m]) 
and m + 1(P[m + 1]) satisfy the following inequality: 

].1[ ][ ]1[ +≤≤− mPmPmP  

It means that an interval of changes of a being sought parameter is estimated. 
Second, the results of the iterative process and the corresponding Padé 

approximations lead to a sufficient increase of the heuristic reliability of the results and 
can serve as a tool of its theoretical background. 
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ITERATIVNI PROCESI I PADÉ-OVA APROKSIMACIJA 

I. V. Andrianov, J. Awrejcewicz, G. Kudra 

U mnogim istraživanjima orjentisanim ka primeni, početni koeficijenti koji karakterišu 
diferencijalne jednačine (uzrokovani npr. trenjem) često se zamenjuju kontinualnim funkcijama 
(aproksimacija). Jedan od efektivnih metoda za korišćenje opisane metodologije zasniva se na 
uvođenju formalno malog (preturbacionog) parametra, a zatim na izvođenju sukcesivnih iteracija 
po ovom parametru. U ovom radu pokazali smo da kombinacija pomenute iterativne procedure i 
Padé-ove aproksimacije vodi ka značajnom smanjenju broja iteracija. 

Ključne reči: iterativni procesi, Padé-ova aproksimacija 

 


