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Abstract. Resonant motions are possible only in an inhomogeneous gravitational field. 
This is the reason why in the beginning of the work we elucidate the principal 
differences between a homogeneous and an inhomogeneous field. We show that the 
resonant motions in closed orbits are consequences of the kinematical extrema 
conditions at perihelion and/or aphelion. Resonance ratios are determined and it is 
shown that resonance may take place after one, two and four revolutions. Finally, in 
the Appendix, we propose a simple criterion for ranking of the gravitational fields.  
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1. INTRODUCTION 

Natural phenomenon that rotational and orbital periods of certain solid heavenly bodies 
moving along closed orbits are related as the rational fractions is denominated resonance 
in celestial mechanics. The first researchers of the resonant effects were Euler, Lagrange 
and Laplace, more than two centuries ago. Their work was followed by numerous 
authors, among whom the most significant were, at the end of the nineteenth century, 
Bohlin and Poincare. During the last fifty years, along with the development of the artifi-
cial satellite and orbital station techniques, interest in the resonant motions was revived 
(see, e.g. [1], [2], [3]). In the work [9] the second order differential equation of the rela-
tive rotation of a body in the closed orbit around the center of gravitation was derived and 
a hypothesis that the corresponding angular velocity must have an extremum at perihelion 
as the necessary resonance condition was proposed. Numerical simulations of the relative 
rotations (for different shapes of the body and different eccentricities of the orbit) cor-
roborated this assumption: in the cases of the resonance, as a rule, relative angular 
velocities were extreme at perihelion. 

 Since  numerical results are less convincing as a rigorous proof,  here we offer an  
that stabilized (i.e. resonant) motion in closed orbit is possible only if one of the principal 
axes of inertia coincides with the direction connecting perihelion and aphelion (line of 
apsides), whenever body arrives at one or at both of these points. Consequences are the 
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following: relative angular acceleration of the body has to be zero, so that an extremum 
or an inflexion must be present in the relative angular velocity function at the coincident 
point.  

MOTION OF THE BODY AND FRAMES OF REFERENCE  

Consider a body of the mass m, moving in the orbit around the dominant center of 
gravitation of the mass m*. (Gravitational noise is excluded). Besides orbital motion, the 
body revolves around the principal axis (1) of its ellipsoid of inertia and this axis remains 
perpendicular to the orbital plane. Thus, we restrict our analysis to the planar motion of 
the body, only. 

 
Fig. 1. Motion of the Body and Frames of Reference 

As usually, the orbit is defined in the polar system of coordinates R, ψ with the center 
of gravitation C* as the origin. Mass center C of the body is chosen to be the origin of two 
moving frames of reference Cxy and Cξη. The first one (the translational along the radial 
direction displaced polar frame) is related to the geometry of the orbit. The second one is 
related to the geometry of the mass: Cξ is directed along the principal axis (3) and Cη - 
along the axis (2) of the ellipsoid of inertia.  

Position of the second frame with respect to the first one is defined by the angle 
of relative rotation  ϕ = ξxC�  (Fig. 1).  

HOMOGENEOUS AND INHOMOGENEOUS GRAVITATIONAL FIELDS  

Distinction between a homogeneous and an inhomogeneous gravitational field has 
nothing to do with its real nature, of course. The difference is only conceptual, that is, it 
is related to the assumed model of the field and this model has to be restricted to the 
active part of the field – to that part which is occupied by the body. 
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In a homogeneous field, intensities and directions of the elementary gravitational 
forces acting on the body particles depend on the position of the mass center in the 
gravitational field only. They are neither the functions of the position of the particles 
within the body, nor of the position of the body with respect to the direction C*C (Fig. 2). 
All the elementary forces are parallel to this direction and their sum, the "weight" of the 
body, coincides with that line, regardless the relative rotation of the body in the frame of 
reference Cxy. The resultant of the elementary forces in a homogeneous field always 
passes through the mass center, so the gravitational moment with respect to that point 
does not exist. In fact, the mass center of a body in such a field represents the center of 
gravity, as conceived by Archimedes some 2.5 centuries B.C. 

On the other hand, if the gravitational field is inhomogeneous one, intensities and di-
rections of the elementary forces depend on the positions of the mass center in the 
gravitational field, on the positions of the corresponding particles within the body and on 
the relative position of the body in the "orbital" frame of reference Cxy. All these forces 
converge toward the gravitational center and so does their resultant. Generally, this 
resultant does not pass   through the mass center, so it has to produce the gravitational 
moment at that point (Fig. 3). Hence we have a very important property of the 
inhomogeneous field:  the existence of the gravitational moment with respect to the mass 
center. 

  
Fig. 2. Homogeneous Gravitational Field  Fig. 3. Inhomogeneous Gravitational Field 

Another important point is the absence of the center of gravity, as we have empha-
sized that before [10]. "Conversion" of a homogeneous into an inhomogeneous gravita-
tional field implies displacement of this point from the mass center C far away from the 
body, into the gravitational center C*. While the orbital motion of the body produces ro-
tation of the radial direction C*C around C*, its relative rotation produces tilting of the 
gravitational force around this direction. 
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GF(2): COMPONENTS OF NEWTON'S GRAVITATIONAL LOAD AND THEIR POTENTIAL 

Components of the gravitational load have the following forms in the gravitational 
field of the second rank (see Appendix): 

 ⎥⎦
⎤

⎢⎣
⎡ ϕ−+

+−= 2
321

0
2cos)(3

4
31

mR
IIIFX  ,  (1)                                 

 ϕ
−

= 2sin
2
3

2
32

0 mR
IIFY , (2) 

 .2sin
2
3 32

0 ϕ
−

−=−=
mR

IIFRYM C  (3)  

In these expressions, F0 is the gravitational force in a homogeneous field, G is the 
gravitational constant, while I1, I2 and I3 are the central principal moments of inertia of 
the body. 

It is possible now to formulate the potential energy of this load. Clearly, it has to be 
an approximation, valid in the GF(2): 
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Obviously, negative partial derivatives with respect to the related coordinates are the 
correspondent components of the gravitational load 
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Concerning the transversal component of the force, it may be obtained only indirectly, 
because it does not perform work in motion of the body along the orbit. 

MOTION OF THE BODY IN AN INHOMOGENEOUS GRAVITATIONAL FIELD 

Differential equations of motion of the body in GF(2) may be written as follows 
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Dots over the symbols denote the first and the second derivatives of the corresponding 
variable with respect to time. 
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It is evident that in general case, if I2 ≠ I1, relative rotation of the body affects all three 
components of the gravitational load, causing an  appearance of the periodic forcing 
terms on the right-hand sides of the equations (5), (6) and (7). Although these terms have 
very small amplitudes (of the order δ2), they produce some immediate, but also, due to 
their long duration, some cumulative effects upon the motion of the body. 

Let us enumerate some of them. 
▪ Taking into account that the right-hand side of the equation (6) is nonzero, the secto-

rial velocity is not constant in an inhomogeneous field, but "almost constant" wavy line, 
periodic in time (Fig. 4). 

 
Fig. 4. Sectorial Velocity in an Inhomogeneous Gravitational Field  

▪ Forcing terms, appearing in (6) and (7) produce meander course of the mass center 
path around the corresponding Kepler's orbit (Fig. 5). 

 
Fig. 5. Path of the Mass Center in an Inhomogeneous Field 

Discrepancies are negligible if the cross section of the ellipsoid of inertia with the or-
bital plane is an approximate circle, but if I2 >> I3, they may be quite noticeable. 

* Radial coordinate and orbital angular velocity have extrema at perihelion (and aphe-
lion, in a closed orbit), so that right-hand sides of (6) and (7) have to be equal zero there. 
In such a way, equations of transversal and rotational motions become zero identities at 
characteristic points of the orbit: 
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Since the gravitational force is maximal at perihelion and minimal at aphelion, it is 
plausible to suppose that dynamic characteristics of motion, kinetic and potential ener-
gies, must also have their extrema at those points. It is obvious, from (4) that 

 UU P min= , therefore  EEP max=   for  0=ϕP   and         (10) 

 UU A max= , therefore  EEP min=   for  
2
π

=ϕP .           (11) 

Such a differentiation does not follow consequentially from (8) and (9). This may be 
ascribed to the approximate expressions for the gravitational load and its potential, ob-
tained in GF(2). It is more likely that only conditions (10) and (11) have to exist. 

 
Fig. 6. Extrema Conditions and Dispositions of the Body at Perihelion 

Regarding relative angular velocity, the form of this function at perihelion (and aphe-
lion, in the case of a closed orbit) depends on several factors. By use of the equation (7) 
the third derivative of ϕ with respect to time at apsides may be written in the form 
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while P/A  denotes perihelion/aphelion.  
 A close inspection of (12) shows that, depending on direction of the relative 
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The possibility of the inflexion at apsides implies an asymmetrical form of the 
function )(tϕ� there and, since relative and orbital motions are coupled, that fact may even 
indicate a kind of the orbital instability. 

Table 1. Relative Angular Velocity Function at Perihelion and Aphelion 

direction of 
relative 
rotation 

cos 2ϕP cos 2ϕA 
AP

APAPk
/

//

ψ
ϕ
���
�

 Pϕ�  Aϕ�  

irrelevant 0 (I2 = I3) ϕ�min  ϕ�max  
1∓  ±1 irrelevant ϕ�min  ϕ�max  

> 1 ϕ�max  ϕ�min  
= 1 inf lexion point 

progressive 
retrograde 

±1 1∓  
< 1 ϕ�min  ϕ�max  

RESONANCE CONDITION AND RESONANCE RATIOS 

As mentioned above, resonant motions are possible in the closed orbits only, and from 
now on we restrict our considerations to such orbits, with eccentricities 0 ≤ e < 1.  

As shown before, the extrema conditions at perihelion and aphelion require that one 
of the principal axes  ξ or η of the body becomes coincident with the line of apsides AP 
every time when it arrives at those points. Fulfillment of this requirement during the mo-
tion results in a resonance. 

At a first impulse one would try to obtain the resonance condition by mere unification 
of the conditions (8) and (9), or (10) and (11). But it does not seem to be a wise approach. 
In order to come to the correct condition producing all the possible resonance ratios, it is 
necessary to take into account the very beginning of the resonant motion. Genesis of such 
a motion depends on the eccentricity of the orbit and on the shape of the body, mainly.  

In the case of a great eccentricity and, especially if I2 >> I3, the influence of the orbit 
is very strong and the (maximal) gravitational force at the perihelion will, acting like a 
magnet, oblige the body to take the proper position and thus to produce the resonant 
motion. So, the capture into the resonance occurs immediately or soon after the capture 
into the orbit of the body. This does not mean that the corresponding extrema condition is 
to be immediately fulfilled at the opposite point of the orbit, where the influence of the 
gravitational force is minimal. 

Quite a different situation arises when the eccentricity is small, or I2 ≈ I3. If that is the 
case, once captured into the orbit, the body generally resumes chaotic rotations. During 
such a motion there is a chance that once, at perihelion or aphelion, one of the principal 
axes and direction AP become coincident. After that, the body would periodically assume 
the same position, having the same angular velocity and the angular acceleration zero. 
That event represents another scenario of the capture into the resonance. Again, it is not 
necessary that the extrema condition is fulfilled at the opposite point of the orbit.  

Let us proceed now. We take the perihelion for the more probable capture point, with 
the remark that result would be the same if aphelion was the choice. If we represent the 
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angle of relative rotation as ϕ = ϕ(ψ) and assume the beginning of ψ at the line C *P, the 
resonance condition may be expressed in the form of an integer argument function 
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− i indicates the capture position of the body; it may take values 0 or 1; 
− m represents the single revolution average angular velocity, depending on the cap-
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Resonance ratio represents the relation between the angles of absolute and orbital 
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Depending on the average angular velocity, resonant motions may have orbital peri-
ods of one, two and four revolutions 
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The middle term of this, in two directions infinite sequence is the so cold "ideal" 
resonance 1/1, related to the zero average angular velocity. It separates ratios corre-
sponding to the retrograde and to the progressive relative rotations. 

In which resonance the body is to be captured depends on many factors. The most 
important are 

− shape of the orbit, that is, its eccentricity, 
− shape of  the body, characterized by its shape factor s = (I2 − I3) / I1 and     
− initial, that is, capture relative angular velocity. 
There is one more point we must discuss here. Dissipative forces were neglected in 

the equations of motion. It was entirely justified by the fact of their smallness as well as 
on their insignificance regarding solution of the posed problem. However, when motions 
of the heavenly bodies are in question, the time measures are millennia, even eons and 
the work of these damping forces gradually slows down orbital and rotational motions. 
The effect of the friction with the cosmic dust is an increase of the radius and reduction 
of the eccentricity [7] of the orbit, while the tidal friction slows down relative rotation of 
the body. All that results in the numerical diminution of the resonance ratio and in the 
approach, either from the left or from the right, to the resonance situated in the middle of 
the sequence. As it was the case with the beginning of the resonant motion, depending on 
the shape of the orbit, as well as on the shape of the body, the change from the higher to 
the lower resonance may occur suddenly, or gradually – through chaotic motion. 

After this digression, we may continue now. As seen above, resonant motions with 
one, two and four revolutions orbital periods were obtained from the resonance condition 
(13), which corresponds to the extrema condition (8). Regarding satisfaction of the re-
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maining conditions (9), (10) and (11) we show Table 2, in which the signs + and – mean 
that the related condition is/is not satisfied. 

Like the other motions, resonant motions may be more or less stable. Using the 
stability of the ball in a spherical cavity metaphor, it is possible to speak of the "shallow" 
and the "deep" resonance [1]. The capture into and escape from a shallow resonance 
should have to be relatively easy and so should have to be the capture into a deep one. On 
the other hand, escape from a deep resonance should have to require a great amount of 
the energy consumption. 

If one adopts the number of the fulfilled extrema conditions as a kind of the resonant 
motions stability criterion, one will reach to the expected outcome that the four – cycles 
resonant motions with the "wrong" capture position (ϕP = π/2) have the least stability: 
excepting this capture position, none of the other conditions is to be satisfied during such 
motions.  

And now comes a somewhat surprising result: not the single-cycle, but the two-cycles 
resonant motions with "correct" capture position (ϕP = 0) satisfy all four extrema con-
ditions. On the contrary, it is impossible that during the single-cycle resonant motions the 
energy extrema conditions were fulfilled at both characteristic points of the orbit. 

Table 2. Resonant Motions: Fulfillment of the Extrema Conditions 

P A P A number of 
revolutions capture 

position (9) (10) (11) 

0 + (0) + − 
one 

2
π  ⎟

⎠
⎞

⎜
⎝
⎛ π

+
2

 − + 

0 ⎟
⎠
⎞

⎜
⎝
⎛ π

+
2

 + + 
two 

2
π  + (0) - − 

0 − + − 
four 

2
π  − − − 

This result is possibly an explanation of the Mercury's resonance. Rotational axis of 
this planet is almost perpendicular to the orbital plane and our model roughly corresponds 
to the Mercury motion. For almost a hundred years it was considered that Mercury moves 
around the Sun in the "ideal" 1/1 resonance.  Subsequently, however, some forty years 
ago, it was established that its resonance ratio is, actually, 3/2. From the standpoint of the 
here proposed criterion, if the capture position of this celestial body was correct, motion 
in 3/2 is more stable than motion in 1/1 resonance. Taking into consideration the 
outstanding eccentricity of its orbit (e = 0.206), the chance that Mercury might escape the 
present and become captured into the "ideal" resonance appears insignificant. In general, 
1/1 resonance is neither more nor less stable than any other single-cycle resonance.  
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It seems that the passage into the ideal resonance and the change in the shape of the 
orbit have to go together. As already mentioned, due to the continuous energy degrada-
tion, eccentricity of the orbit decreases and consequently, the orbital motion becomes 
uniform. Simultaneously, the relative rotation slows down and when it stops, in accor-
dance with the minimal potential energy principle, the body assumes the stable position 
ϕ = 0, pointing its principal axis of the minimal moment of inertia toward the center of 
gravitation. This resonance 1/1 is the final one and, in our opinion, the term ideal should 
have to be reserved for such a motion only: uniform motion in a circular orbit, relative 
angular velocity – zero and position of the body – stable. 

Earth's Moon, as well as the numerous satellites orbiting around the other solar sys-
tem planets, moves, approximately, in such a resonance. 

CONCLUSION 

It is not possible to speak about resonant motions in a gravitational field if an inho-
mogeneous field as a model for this field was not adopted.  

Hence, in the beginning of this work the principal features of an inhomogeneous 
gravitational field were emphasized and after that, the components of the gravitational 
load and their potential in such a field were given. Being the forcing terms in the 
differential equations of motions, these components produce appreciable dissimilarities 
between the motions in a homogeneous and in an inhomogeneous gravitational field. 

One of the most important differences is that an inhomogeneous field forces the body 
moving in a closed and stable orbit to revolve in resonance. We have shown in this work 
that fulfillment of the kinematical quantities extrema condition in perihelion and/or aphe-
lion requires that one of the body's principal axes of inertia coincides with the line of ap-
sides whenever body arrives at one, or both these points. The result is a stable, that is, a 
resonant motion. 

We have also determined a sequence of the resonance ratios. It was shown that the 
resonant motions may have orbital periods of one, two and four revolutions. An 
interesting conclusion is that generally, when eccentricity of the orbit differs from zero 
and the cross section of the ellipsoid of inertia with the orbital plane differs from the 
circle, the two-cycles resonance is the most stable one. 

APPENDIX: RANKING OF THE GRAVITATIONAL FIELDS 

According to the Figure 3, the Newton's gravitational force acting on the body in an 
inhomogeneous field may be represented in the form 

2r
dm

r
rGmF

m
∫∗=
GG

 , 

where ),( yxRr −−−
G denotes position of the center of gravitation with respect to the 

body's elementary mass. 
The need for ranking of the fields follows from the fact that it is not possible to ex-

press this integral in finite form, by use of the elementary functions. Instead, it may be 
represented as the infinite functional series, only 
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We propose the following form of the series representing components of this force 
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The terms of the series are products of the dimensionless functions kX  and kY  with 
the functional parameters δk . Functions kX  and kY  depend on the geometry of mass of 
the body, as well as on its relative rotation. The mass distribution is characterized by the 
moments of mass Mik (i = 1,2,3) of the order k with respect to the adopted frame of refer-
ence. It is convenient to take that the moments of the zero order determine mass of the 
body: Mi0 = m, while the first moments define the position of the center of mass C. Since 
this point was chosen to be the origin of our frames of reference, it is obvious that these 
moments have to be zeros, identically: Mi1 = 0 (i = 1,2,3). 

The second moments Mi2 are the moments of inertia, of course. In the frame ξ,η,ζ 
those are the principal moments: Mi2 = Ii (i = 1,2,3). 

Moments of mass of the higher order must have their meanings too, but their defi-
nitions have not been established, yet. Arguments Sk, denominated the shape factors in 
the work [9] may be defined in the following form 
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Regarding parameters δk, they may be represented as relations 
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Obviously, δ0 = 1, while δ1 ≡ 0. The other parameters are, as a rule, very small num-
bers in the celestial mechanics, situated in the interval 
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Note that min R = C *P (P- perihelion), while max R = ∞, for an open orbit and  
max R = C *A (A-aphelion), in the case of the closed one. As an illustration, for Earth in 
the gravitational field of the Sun (considering small eccentricity of its orbit) one may 
adopt that O(δ2) = 10−9. An effect of smallness of these parameters is a fast convergence 
of the sums of series toward the exact solutions. 

Convenience of the forms (A1) and (A2) becomes evident. Parameters δk in both ex-
pressions indicate the terms of the comparable order, so that we may safely truncate 
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series in these equations now and use the sums of the finite series as the approximate 
values of the force  components. The term after which the series are to be truncated may 
be used as a criterion for ranking of the gravitational fields. The rule is quite simple: 
- rank of the field is K if the components of the gravitational force are approximated 
by the finite series with K terms. Such a field may be denominated GF(K). 

If we substitute  10 −=X   and  00 =Y   into (A1) and (A2) we shall get 

X = −F0, Y = 0 and MC = −RY = 0. 
According to the given criterion, as well as to what was said about the homogeneous 

and inhomogeneous fields, the GF(0) is obviously a homogeneous field. Since δ1 ≡ 0, 
GF(1)  would be a homogeneous field, also. Actually, )0()1( GFGF ≡ . 

All the other fields are inhomogeneous. If we take into account one more term, we 
"enter" into the GF(2) which has all the characteristics of an inhomogeneous field. 

Here follow the components of the gravitational force in that field, written in the form 
(A1), (A2): 
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and the gravitational moment with respect to the mass center is, of course 
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And that is all we have at this moment: 
− GF(0) = GF(1) – homogeneous gravitational field and 
− GF(2) – inhomogeneous gravitational field. 
Gravitational fields of the higher rank will have to wait until definitions of the mo-

ments of mass of the higher order were established. 
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O UZROKU REZONANTNIH KRETANJA NEBESKIH TELA 

Milutin Marjanov 

Fenomen gravitacione rezonance može se ispoljiti samo u nehomogenom gravitacionom polju. 
Stoga su na početku rada istaknute osnovne razlike između homogenog i nehomogenog polja. Izvedene 
su komponente gravitacionog opterećenja i njegov potencijal pri ravnom kretanju u nehomogenom 
polju. Pokazano je da su rezonantna kretanja (u zatvorenim orbitama) posledice postojanja 
ekstremuma kinematičkih i dinamičkih atributa kretanja u apsidama. Dat je beskrajni niz rezonantnih 
brojeva, to jest, razlomaka čiji su imenioci jedan, dva ili četiri. Naime, pokazalo se da su to brojevi 
orbitalnih revolucija u kojima se može uspostaviti rezonanca s rotacionim kretanjem. U prilogu je 
prikazan jednostavan kriterijum za razvrstavanje gravitacionih polja koji je korišćen u ovome radu. 
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