
FACTA UNIVERSITATIS  
Series: Mechanics, Automatic Control and Robotics Vol. 4, No 17, 2005, pp. 225 - 243 

 

EIGENAMPLITUDE VECTORS AND FUNCTIONS  
EXTENDED ORTHOGONALITY OF SMALL OSCILLATIONS 

MIXED SYSTEMS OF THE COUPLED DISCRETE  
AND CONTINUOUS SUBSYSTEMS   

UDC 534.1:534.012:534.013 (045) 

Katica (Stevanoviċ) Hedrih 

Faculty of Mechanical Engineering University of Niš 
Mathematical Intitute SANU Belgrade 

Serbia and Montenegro, 18000, Niš,  Vojvode Tankosiċa 3/22 
e-mail: katica@masfak.masfak.ni.ac.yu 

Abstract. In this paper, by using general examples of mixed systems of the coupled discrete 
subsystem of rigid bodies and continuous subsystem, the extended orthogonality expression 
of own amplitude vectors and of own amplitude functions of small oscillations are derived. 
By using examples, the analogy between frequency equations of some classes of these 
systems is identified.  
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1. INTRODUCTION 

In many classical university books like Theory of Oscillations (see Ref. [1]) we can 
find many examples of classical tasks of frequency equations of discrete or continuous 
system oscillations, which are excited with initial perturbations of equilibrium natural 
state. During a the long time period, as a professor of Elastodynamics and Theory of 
Oscillations at the Faculty of Mechanical Engineering, I was the author of many original 
examine tasks and corresponding solutions of these tasks. In the teaching process I must 
show the students rational explanations of the same solutions, and properties of 
oscillatory processes of the system dynamics. By introducing some of my assistants to the 
teaching process I discuss the possibilities for different solutions of the equations of 
oscillatory systems dynamics and small transformations of the examine tasks definitions 
to compose new tasks but with the same solution philosophy. Nowdays, by using 
computer tools such as MathCad, Mathematica, Math Lab, a new powerful possibilities  
for the visualization of oscillatory processes in dynamical systems applied in engineering 
practice are very useful for the university teaching of the theory of oscillations as a 
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accompanying tools to the analytical method and pure mathematical explanations. Using 
these WEB and MathCad information tools the examine tasks of  Elastodynamics and 
The Theory of Oscillations in the teaching process and studies at the Faculty of 
Mechanical Engineering are presented at www.masfak.ni.ac.yu/Elastodynamika  (see Ref. 
[2]). Some of these original tasks with the solutions are published in the three books (see 
Refs. [3],  [4] and [5]). 

The current research in the theory of discrete dynamical system oscillations is 
directed to the nonlinear phenomena (See Ref. [6]), as well as to the nonstationary 
processes, and also to the stochastic-like and chaotic-like  processes in purely 
deterministic dynamical systems and conditions. In the theory of the oscillations of the 
continuous systems also nonlinear phenomena and damage and fracture structure of 
dynamical systems are the topics of the same premier journals and international scientific 
meetings and conferences (See Proceedings of ENOC Copenhagen 1999, Moscow 2002; 
ICNM Shanghai 1998, 2002.; Control Oscillations and Chaos COC 2000 Saint 
Petersburg, ....Issues of Journal Applied Mechanics Reviews and Refferativniy Zhurnal 
Mechanika Moscow.....). The pure elastic system is presently not in the focus of 
researchers (see Ref. [7]). 

New materials in engineering systems are inspirations of many researchers for new 
constitutive relations discoveries in mathematical sense and for investigations on the 
dynamics of these constructions. In some published papers of the author the dynamics of 
discrete systems of the material particles which are constrained by the standard 
hereditary, rheological, or creep light elements (see Ref. [8], [9], [10], [11] and  [12]) are 
investigated. These papers are inspired by the papers of Goroshko O. A. et. all. (see Ref. 
[13]).  

In the monograph [14] by Goroshko O. A. and Hedrih (Stevanović) K. an analytical 
dynamics of the discrete hereditary systems, and corresponding solutions are first 
published as an integral theory of this kind of systems.  

As a new material in active systems the piezoceramics is used. In the papers [15] and 
[16] piezoceramics behaviour in the vibrations regimes are presented as  results of the 
analytical, numerical and experimental investigations of the vibrations frequency spectra. 
These results are important for investigations of active structure oscillations and control 
of oscillations.  

In the paper [17] and [18] longitudinal hereditary vibrations and creep vibrations of a 
fractional derivative rheological rod with variable cross section are examined. Partial 
differential equation and particular solutions for the case of natural creep longitudinal  
vibrations of the rod of creep  material of a fractional derivative order is accomplished. 
For the case of natural creep vibrations, eigenfunction and time-function, for different 
examples of boundary conditions are determined. Different boundary conditions are 
analysed and the series of eigenvalues and natural circular frequencies of longitudinal 
creep vibrations, as well as tables of these values are completed. Using the MathCad 
software a graphical representation of the time-function is presented. 

Papers [19], [20], [21] and [22], consider the problem of transversal oscillations of a 
bar, which is free or under the action of the length-wise random forces.  

In the paper [22] the problem of the transversal oscillations of two layer straight bar 
under the action of the length-wise random forces is considered. The excitation process is 
a bounded noise excitation. It is assumed, that the layers of the bar were made of creep 
continuously non homogenous material and that the corresponding modulus of elasticity 
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and creep fractional derivative order constitutive relation of the each layer are continuous 
function of the length coordinate and the thickness coordinates. The equation of the 
transversal creep vibrations of a fractional derivative order constitutive relation beam are 
examined. Partial fractional-differential equation and particular solutions for the case of 
natural creep vibrations of the beam of creep material of a fractional derivative order con-
stitutive relation in the case of the influence of rotation inertia is derived. For the case of 
natural creep vibrations, eigenfunction and time-function, for different examples of 
boundary conditions, are determined.  

The paper [23] presents the discrete continuum method showing examples of 
homogenous discrete systems with the limited number of degrees of freedom. These 
systems are in the form of homogenous chains and nets in the space and plain. Material 
points of these nets and chains are tied by elastic, standard hereditary or creep elements. 
By introducing the trigonometric method for studying the properties and the equations of 
dynamics of discrete homogenous continuums author sets up the discrete continuum 
method for the study of dynamics of chain systems with hereditary or creeping 
connections. This systems dynamics is described by a system of integro-differential 
equations or differential equations with fractional derivatives. A light standard creep 
element is defined by a constitutive relation of stress-strain state, for the creation of 
which fractional order derivatives were used. 

In the paper [23] we can follow keywords: discrete continuum, discrete hereditary 
system, discrete homogenous chain, discrete homogenous material net, elastic element, 
standard hereditary light element, standard creep light element, integro-differential rela-
tion, fractional derivatives order, Jules-Lissajous figure, trigonometric method, small 
vibrations. We can see an interaction between notions of words discrete continuum and 
continuous or discrete systems. It was inspiration for me to return my focus and pay at-
tention to the mixed systems of the coupled discrete subsystem of rigid bodies and con-
tinuous subsystem and to compose characteristic – frequency equations of the small os-
cillations of these systems.  

Papers [24] and [25] are also directed to the examination of the classical knowledge 
of continuous and discrete systems in order to make some new conclusions. Papers [26] 
and [27] give visualizations of oscillatory processes in classical oscillatory models of real 
systems and give new illumination of the properties of these systems variety of 
oscillatory processes.    

 This work is one new contribution to the knowledge of the mixed systems of the 
coupled discrete subsystem of rigid bodies and continuous subsystem to compose 
characteristic – frequency equations of the small oscillations.  

We can conclude that new computer tools with power computer possibilities directed 
philosophy of considerations of real systems dynamics by using discretization of contin-
uum as the way and method for solutions of problems, and by using many iterations con-
tinualizations of solutions. Discretizations and continualizations in the process of solu-
tions and analysis of dynamical processes are opposite directions and good method for 
proving calculations and conclusions.    

In accordance with narrow specializations of researchers we can not find  more exam-
ples which considered mixed systems consisting of coupled discrete and continuous 
systems. And not very often there are some analytical results. In the époque of the large 
numerical experiments over the dynamical systems I think that it is very important to 
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make some new classical  examples of the frequency equations useful for the teaching 
process in the Theory of vibrations.  

2. MODEL OF MIXED SYSTEMS OF THE COUPLED DISCRETE SUBSYSTEM  
OF RIGID BODIES AND CONTINUOUS SUBSYSTEM  

Let consider two subsystems: one elastic rod, the axis of which is straight, as a 
continuous system solid deformable body with the following parameters: E, ρ, , A, and 
with two rigid weights at free ends with masses  mp and m0 (see Figure 1.); This rod is 
constrained by the spring with the stiffness  c0 and coupled with discrete systems with n 
degree of freedom. For example, this discrete subsystem is a chain system of the n 
material particles with masses mi , i = 1,2,3,...n, translatory movable along the line 
parallel to the axis of the rod; these masses are connected by the springs with stiffnesses 
ci , i = 1,2,3,...n, We consider the relations between the longitudinal vibrations of the 
elastic rod and the free oscillations of the chain material particles system. Let’s determine 
the frequency equations of the defined mixed system of the coupled discrete subsystem of 
rigid bodies and the continuous subsystem. 

2.1.  Differential Equation of the Longitudinal Oscillations  
of the Elastic Rod and Boundary Conditions 

In accordance with the notations in the Figure 1. we can see that u(x,t) represents  the 
longitudinal displacement of the rod’s cross section at the distance  x measured from the left  
end of the rod in the axis direction at the time t. Partial differential equation of the 
longitudinal oscillations is:  

 
2 2

2
2 2

( , ) ( , )
e

u x t u x tc
t x

∂ ∂
=

∂ ∂
 (1) 

where is: 2
ec =

ρ
E . 

 

1x 2x 3x 1−nx nx

1m

x ( )txu ,

( )tu ,0 ( ) ( )txtu 0, =A

2m 3m 1−nm nm

0mpm

1−nc  nc3c2c1c0c

AE,,, Aρ

 
Fig. 1. Small oscillations of the mixed system of the coupled discrete and continuous 

subsystems Longitudinal oscillations of the beam with multi body chain with 
changeable numbers of material particles. 

Solution of the equation (1) is in the following form: 

 ( , ) ( ) ( )u x t x t= X T  (2)  
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where are:   
 1 2( ) cos sinx C x C x= λ + λX  (3) 

 ( ) cos sint A t B t= ω + ωT  (4) 

Using the boundary conditions of the subsystem of the longitudinal rod’s oscillations 
(se Ref. [1]) as well as the compatibility conditions of the displacements and forces as 
interactions of the coupled subsystems we can write: 
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Introducing the proposed solutions (2) into boundary conditions and the conditions of 
the compatibility for displacement and forces we can write: 

  0)0(~)0(~2 =′ξ+ξµ XXP   (8) 

  0)(~)(~)( 1
2

0 =κ+ξ′ξ−ξκ−ξµ AXX   (9) 

 
Using is the relation: ξ+ξ=ξ sincos)(~

21 CCX  and the corresponding derivative with 
respect to the argument ξ: ξ+ξ−=ξ′ cossin)(~

21 CCX , from the previous equations we can 
obtain: 

  

  021
2 =ξ+ξµ CCP   (10) 
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Determinant of the previous algebraic system of equations with respect to C1, C2 is: 



230 K. (STEVANOVIĊ) HEDRIH 

( )
 ]cossin)[(]sincos)[( 2

0
2

0

2

ξξ−ξκ−ξµξξ+ξκ−ξµ
ξξµ

=ξ∆ P  

 ]}sincos)[(]cossin)[({)( 2
0

2
0 ξξ+ξκ−ξµ−ξξ−ξκ−ξµξµξ=ξ∆ P  (11) 

and these coefficients can express in the following way: 
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2.2.  Differential Equations for a Discrete System of Material Particles  
with Boundary Condition 

Now, we consider a subsystem of discrete material particles with n degrees of 
freedom and we choose n generalized coordinates xi, i = 1,2,3,...,n, and the corresponding 
matrix A of the inertia coefficients  and the matrix C of the quasi-elastic coefficients: 
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The system of differential equations of the discrete subsystem with boundary con-
dition is: 
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The solution of the previous system (16) is assumed in the following form: 
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2.3.  Frequency Equation of the Coupled Longitudinal Oscillations of the Elastic 
Rod and Discrete System of the Material Particles (First approach) 

Taking into consideration that:  

 )()sincos()()()(),( 210 tCCttxtu TTX ξ+ξ=== AA  (18) 

and that:   CC =
0

1
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     AA =
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1
m

 form the system of differential equations in matrix 

form (15) we can obtain the following matrix equation: 

 }0{}){sincos(}){( 2100 =ξ+ξ−+ξ− ICCAu IAC 2  (19.1) 

and  using the boundary conditions (10) of deformable elastic rod ends we can write the 
following matrix equation: 
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In the scalar form these two matrix equation are the system of n + 2 algebraic 
homogeneous equations with unknown amplitudes Ak, k = 1,2,...,n and C1 and C2: 
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The previous two matrix equations are n + 2 algebra homogeneous equations and for 
nontrivial solutions it is necessary that determinant of this system is equal to zero. From 
this condition we can obtain the following characteristic frequency transcendent equation: 
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This is the first main result of this consideration of the mixed system of the coupled 
subsystems free oscillations. We can see that this equation consists of four submatrices:  
two main submatrices: one part is the expression of the frequency equations of the 
discrete system oscillations, and the second of the deformable body frequency equation, 
and two submatrices as the matrices of coupling of main matrices. The series of roots of 
this characteristic equation (20) are characteristic number ξs, s = 1,2,3,..., ∞. 
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Unknown amplitudes Ak, k = 1,2,3,...,n and C1 and C2 correspond to the eigen  
characteristic number ξs we obtain from the relations: 
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and k is the column for the eigen characteristic number ξs. Then, for the amplitudes Ak, 
k = 1,2,...,n and C1 and  C2 we obtain: 
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 Extended solutions are in the following forms: 
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2.4.  Frequency Equation of the Coupled Longitudinal Oscillations of the Elastic 
Rod and Discrete System of the Material Particles (Second Approach) 

Using the solutions (12) and (13) for C1 and C2, and taking into account that:  
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The previous matrix equations are the algebraic homogeneous equations and for 
nontrivial solutions it is necessary that determinant of this system is equal to zero. From 
this condition we can obtain the following characteristic frequency transcendent equation: 
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This is the second main result of this consideration of the mixed system of the coupled 
subsystems free oscillations. We can see that this equation consists of two parts: one part 
is expression of the frequency equations of the discrete system oscillations, and the sec-
ond part is the expression of the deformable body frequency equation connected by one 
member with previous.  

2.5.  Special Cases of the Frequency Equation of the Coupled Longitudinal 
Oscillations of the Elastic Rod and Discrete System of the Material Particles 

Derived frequency equation (20) of the free oscillations of the mixed system of the 
coupled subsystems can be written in the developed form in the following way:  
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For the case of the coupled elastic rod longitudinal oscillations and chain discrete mate-
rial particles system oscillations, the previous frequency equations take the following form:  
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For the case that elastic rod is connected with one material particle with two springs 
we obtain:  
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and taking into account expression (11) we can write the following: 
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For the case that one end of the rod is fixed – the case of the cantilever rod, in the 
previous frequency equation we can introduce µp → ∞, and then we obtain: 
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For the case of a free material particle and connected by one spring for rod we can 
write: 
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For the two material particle connected for rod as a chain, we obtain:  
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For the three material particles chain, the frequency equation is:  
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For the case that we have discrete material particles homogeneous chain, the 
frequency equation obtains the following form:  
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For the special case of three material particles homogeneous chain, the frequency 
equation obtain the following form:  
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3. EIGEN AMPLITUDE VECTORS ORHOGONALITY OF SMALL OSCILLATIONS MIXED SYSTEMS 
OF THE COUPLED DISCRETE AND CONTINUOUS SUBSYSTEMS 

Using the main results of the previous consideration of the mixed system of the cou-
pled subsystems free oscillations frequency equation (20) and solving the equation, it is 
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possible to find series of the characteristic own numbers ξs,s = 1,2,3,...,∞, as a series of 
the frequency equation roots. Then using (12) and (13) we can express the characteristic 
coefficients )(

1
sC  and )(

2
sC  in the following form: 
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Then, characteristic amplitude functions are in the following form: 
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The extended solution is: 
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where  
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nk

s
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where )(
,
s
knK  is the co-factor of the system determinant element of the order n and k is the 

column for each eigen characteristic number ξs, s = 1,2,3,...,∞. 

Using the two differential equations: 

 0)()( )(
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which must satisfy  two different arbitrary eigen amplitude functions X(s)(x) and X(r)(x) 
for different eigen characteristic numbers λs and λr when s ≠ r, and multiplying with 
X(s)(x)dx and −X(r)(x)dx, then integrating along x from the left to the right end of the rod, 
from zero to A , after summarizing we obtain the following expression: 
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Using the matrix equation in the form (19)  
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and introducing the notation (30) we can write: 
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This equation must satisfy two different arbitrary eigen amplitude vectors {A(s)} and  
{A(r)} for different eigen characteristic numbers λs and λr when s ≠ r, and multiplying 
with (A(r)) and −(A(s)), then after summarizing we obtain the following expression: 
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 Comparing the expressions (34) and (36)  we can write the following: 
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The characteristic eigen numbers ξs and ξr are different for s ≠ r and the expressions 
in the brackets are equal to zero, and then the extended orthogonality condition of the 
eigen amplitude vectors and eigen amplitude functions is in the following form: 
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for s ≠ r 
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The second form of the extended orthogonality condition of the eigen amplitude vec-
tors and the eigen amplitude functions is in the following form: 
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for s ≠ r 

The orthogonality conditions are: 
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4. ANALOGY BETWEEN OF THE FREQUENCY EQUATION OF THE COUPLED LONGITUDINAL 
OSCILLATIONS OF THE ELASTIC ROD AND DISCRETE SYSTEM OF THE MATERIAL 
PARTICLES AND  COUPLED TORSION  OSCILLATIONS OF THE ELASTIC ROD AND 

CORRESPONDING DISCRETE SYSTEM OF THE MATERIAL PARTICLES 

Using the analogy (see Ref. [27]) between the two systems, and specially between the  
longitudinal and torsional oscillations of the elastic rod with the circle cross section we 
can use the previous analytical results for determining the frequency equation of the 
coupled small oscillations of the mixed systems presented in Figure 2. and 3.  

In a general case a mixed system consists of the two subsystems: one elastic rod-shaft, 
whose axis is straight, with parameters: G,ρ, ,A,I0, and with two rigid discs at free ends 
with mass inertia moment with respect to the shaft axis: JP and J0. This rod-shaft is 
constrained by the torsion spring with the stiffness c0 and coupled with the discrete 
systems with n degrees of freedom. For example, this discrete subsystem is a mechanism 
in the form of a chain system of the n material particles (or rigid bodies) with generalized 
masses mi, i = 1,2,3,...,n, torsion (rotation) movable along the circle line coaxial to the 
axis of the rod-shaft; these masses are connected by torsion springs with stiffnesses ci, 
i = 1,2,3,...,n. We consider relations between the torsional vibrations of the elastic rod-
shaft and the free oscillations of the generalized chain material particles system-
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mechanism (examples in Figure 2. and 3.). Let us determine the frequency equations of 
the defined mixed system of the coupled discrete subsystem of rigid bodies and 
continuous subsystem.  

Using the analogy 
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and taking into account that: 
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we can write the frequency equation of the considered mixed system with torsional os-
cillations of the shaft and coupled mechanisms (Figure 2.) in the same form as the 
frequency equation (20). 

Extended system solutions are: 
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For the special case of the mixed system presented in Figure 3. with cantilever shaft, and 
corresponding mechanisms in accordance with the representation in Figure 3. b*, or 3.c* or 
3.d* we can write the following frequency equation for some of the above examples:  
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When ξ is small we can consider that tg ξ ≈ ξ and for the approximation of the previous 
frequency equation we can write: 
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Fig. 2. Small oscillations of the mixed system of the coupled discrete and 
continuous subsystems. Torsion oscillations of the cantilever shaft with 
multi body mechanisms with changeable numbers of discs. 
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Fig. 3. Small oscillations of the mixed system of the coupled discrete and 

continuous subsystems. Torsion oscillations of the cantilever shaft with 
multi body mechanisms with two chain of the changeable numbers of discs. 
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6. CONCLUDING REMARKS 

From the obtained analytical and numerical results for the natural longitudinal vibra-
tions of an elastic rod coupled with material particle discrete system, it can be seen that 
the connections are convenient for changing characteristic function depending on the 
discrete system material parameters, and that fundamental eigen-function depending on 
space coordinate is dependent on the boundary conditions and the geometrical properties 
of coupled  discrete system.  

Using general examples of the mixed systems of the coupled discrete subsystem of 
rigid bodies and continuous subsystem, the extended orthogonality expression for the 
eigen amplitude vectors and the eigen amplitude functions of small oscillations are 
derived. We can see that this  extended orthogonality condition for the eigen amplitude 
vectors and the eigen amplitude functions of small oscillations contain three parts in the 
expression: one term which corresponds to the discrete subsystem  }{)( )()(

0
sr AAku A ,  

one term correspond to the continuous subsystem  ∫
A

A 0
)()( )()(1 dxxx rs XX , and two terms 

correspond to the boundary condition of the deformable body-subsystem 
)0()0()()( )()()()(0 rsPrs XXXX µ−µ AA . 

We can also see that this  extended orthogonality condition of the eigen amplitude 
vectors and of the eigen amplitude functions of small oscillations, in the second form, 
contain four parts in the expression: one term which correspond to the discrete 
subsystem  )()( )()( sr AA C , one term corresponds to the continuous subsystem  

⎥
⎦
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rsPrssu XXXXEA µ−µξ AA , and last part  
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s AA IX s ξ−   correspond to the coupling of the discrete subsystem and the 
continuous subsystem. 

In this paper we returned to classical, but new problems of the theory of oscillations, 
coupled elastic bodies and systems of discrete material points using selected examples 
and at the same time we determined the corresponding orthogonality conditions to the 
system. Results [30] of a numerical experiment are shown on the frequency function 
graphs that consist out of members that express the influence of discrete systems on the 
frequency equations over the potential functions and terms that express the influence of 
deformable bodies and which contain transcendent functions themselves. From the graph 
in the  paper [30]we can see the visualizations of the perturbations of frequency spectra 
of the eigen circular frequencies, deformable bodies oscillations or vice versa. Similar 
disturbances can be seen on the frequency spectra of a discrete system but with opposite 
effects. We can see “the continualization off the frequency spectra of discrete system” on 
the graph of the frequency functions. At the same time we can interpret these results as 
discretization of the part of frequency spectra of the continuous system as a result of 
coupling with a discrete system. What should also be stated here is the analogy used 
between these mixed systems with coupled subsystems, continuous and discrete when it is 
possible to establish a direct analogy between the longitudinal and torsional oscillations 
of a deformable body with the annular cross-sections. That enabled an analytical 
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analysis to be conducted for one type of the system and the results to be used on another 
type. And at the end, it should be stressed again that the goal of this paper was the 
solution of a classical but very concurrent task since the literature contains a very small 
number of examples of such a task. Methodology of the continuum discretization and of 
the continualization of a discrete system meet at border cases of  the  study of properties 
of real systems. 
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PROŠIRENI USLOV ORTOGONALNOSTI SOPSTVENIH 
AMPLITUDNIH VEKTORA I FUNKCIJA MALIH OSCILACIJA  

KOMPLEKSNIH SISTEMA SPREGNUTIH  
DISKRETNIH I KONTINUALNIH PODSISTEMA 

Katica (Stevanoviċ) Hedrih 

O frekventnim jednačinama malih oscilacija kompleksnih sistema spregnutih diskretnih i 
kontinualnih podsistema održano je predavanje na Seminaru Matematičkog instituta SANU, a rad 
je oštampan u 33 tomu časopisa "Mehanika tvrdogo tela"  internacionalnog zbornika radova 
Instituta primenjene matematike i mehanike Nacionalne akademije nauka Ukrajine. Ovim radom se 
nastavlja prikazivanje rezultata istraživanja malih oscilacija kompleksnih sistema spregnutih 
diskretnih i kontinualnih podsistema, kroz izvođenje i dokaz proširenog uslova otogonalnosti 
sopstvenih amplitudnih vektora i sopstvenih amplitudnih funkcija.  

Korišćenjem izvedenog uslova proširene ortogonalnosti sopstvenih amplitudnih vektora i 
funkcija sistema izvode se izrazi za sopstvene i prinudne oscilacije takvih sistema. 

Ključne reči:  mešoviti sistemi, spregnuti podsistemi, kruta tela, kontinualni sistem, elastično telo, 
vektori sopstvenih amplituda, ortogonalnost.  


