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Abstract. We have made an attempt to simulate the oscillation of peptide planes – a
planar formation in amino-acid chains in tubulin subunits. Because of Curie simmetries
in living organisms we can use capability of classic Lagrange equations application.
The newly developed method gives possibility for calculation tree perpendicular proper
frequencies for each atom in peptide plane. The influences of four contacting and six
neibouring atoms can be settle up accounts. The effect of whole in chain oscillations
appears explicitly, with the consequence that there does not exists two identical
oscillating pictures in chain of 450 amino-acids in tubulin subunits.

Key words: Lagrange equation, oscillation, biophysics, amino-acids chain,
peptide plane.

1. INTRODUCTION

The amino-acids are losing one molecule of water in the process of connecting into
amino-acid chain, so they can be presented as quasi 1-D object in figure 1. However, the
peptide bond is planar, then the polypeptide chain has only two degrees of freedom per
residue. The skeleton atoms of nitrogen and carbon N-Cα-Cβ are laterally connected with
atoms of oxygen and hydrogen, and amino-acid tails (R).

Microtubules in living organisms are specially interested from the point of view of the
information physics theory. The information physics encounters a synergetic theory of
classical mechanics, quantum mechanics and theory of information. Using this new
scientific paradigm it is found that microtubules with clathrins and water clusters in
living cells are major biomolecular devices which satisfy synergy principles of
information physics [1], [2].

The mass numbers for amino acids and their numeric representations in alpha and
beta tubuline subunits are presented in Table 1. A basic skeleton of each amino-acid has
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the same mass number (56 D), but the mass of amino acids tail is from 1 to 130 D, where
1D = 1,67⋅10−27 (kg). The second important difference between tails appears in form
(Figure 2). Three main types of secondary structure of amino-acid are: helix, beta planes
and random chains [6] [7], [8], [9]. Each one of them has its specific function in proteins.
α tubuline monomer consists of 454 amino-acids while β tubulin consists 450, with total
mass 50500 D and 50 230 D, respectively.
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Fig. 1. Model of amino-acid in chain. Distances between atoms are given in nanometers,
while the angles are in degrees. Skeleton of atoms which make protein chain is
given as a bold line.

Table 1. Mass numbers of amino-acids (m), their tails (mR) and their number
in alpha and beta tubuline subunits

A.A. M R E C I S H V G Q
m 131 157 128 103 113 87 137 99 57 128
mR 75 101 72 47 57 31 81 43 1 72
α 10 21 39 12 26 23 13 34 37 16
β 18 22 36 8 18 28 9 34 39 22

A.A A N W L Y P D K T F
m 71 114 186 113 163 98 114 129 101 147
mR 15 58 130 57 107 42 58 73 45 91
α 38 16 4 31 19 20 28 19 29 29
β 29 23 4 32 16 21 28 15 30 23

2. MODEL OF PEPTIDE PLANE OSCILATION

Proteins are systems with relatively small number of atoms, comparing to
thermodynamic systems. In spite they have discrete structure, we can apply Curie limit
symmetry [1] which gives a continuous system. In other words, we can use both - classic
and quantum physics approach.
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Fig. 2. Table of amino-acids with their notation and structural formulas [12]

We apply classic Lagrange model [3],[4] because we are not interested in the oscillations
of electrons, but the oscillation of atoms, as parts of system. We have considered that space
is filled, so each atom has, beside basic connections, several lateral connections too. They
can be much weaker than basic connections, in the chain. Also, we have to bear in mind that
dominant connections in biological systems [5] are different types of electromagnetic inter-
actions. We applied Lagrange equations for moving, on the limited chain of amino-acids.

Peculiarities of bio-systems are:
(1) greather distance between atoms, than in free molecules,
(2) Coulombic interaction, and
(3) Hydrogen bonding.

what we have included in a model, for each atom. To compare with classical approach,
the two more imporant changes in procedure are:

(1) transition from atom position as variable, to the deviation of equilibrium position
as variable,

(2) consider that chain is limited and in contact with enviroment.
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Our solution is equivalent to the solution of Klein-Gordon equation for continuum,
because of very small distances between atoms (more than about ten picometres) and
very big number of atom in chain (more than million).

For each atom, real connections can be presented in a model, as shows in figure 3. We
can see that four equivalent atom connections are in mutually normal direction, in action
to every atom. New six atoms with its connections are indirectly included in deterination
of proper frequency. So we have in model four connecting and six neibouring
atoms,which gives the summary of ten. This gives that our model can be very close to the
realistic one.
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Fig. 3. A model of oscillator with all necessary values for calculation: K - coefficient of
connection, MG, MR - mass of "head" and of "tail", K1,K2 - connections along basic
oscillating channel.
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Fig. 4. Peptide plane with diagonal of oscillating along skeleton
and angles between connections.

If atom in connection is not in proposed directions in model that atom will be divided
in two atoms with the same mass and new coefficients determined by actual, but
modified with coefficients of angle.

The physical nature of Coulomb force, and balance of forces in opposite direction
determines manner of combining coefficients as follows in eqn. (1) and (2). Coefficients
K41, K42 give possibility for calculation of longitudinal frequencies for latteral atoms, in
similar way. Frequencies of oscillation for atom MG in chain with N atoms, with two
perpendicular modes, are determined by eqn. (3) .
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In figures 4 and 5, the peptide plane is presented with the real positions of atom and
as planar quasi-structure with lengths (in nanometers) and angles (in degrees).
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Fig. 5. Lengths and angles of peptide plane. For hydrogen atom position
is determined from balance of forces that affect it.

3. DISCUSSION

The peptide plane consists of a forward part of one and a backward part of another
amino-acid. It is a plane structure which acts as a quasi-particle, because deformed clouds
of electrons give an additional strength. Beside that, the harmonization of electric force
and gravity [10], [11] in living matter makes distances between atoms larger than in non
living matter [5].

The tail is connected normal to direction except for proline, and tails oscillate along
the third degree of freedom.

We calculated the oscillation of peptide plane atoms, along a large diagonal (x-axis),
along its normal (y-axis) and along a tail normal to the peptide plane (z-axis). The
oscillation of atoms on vertices position O-C-H-C in three planes: xy, yz, zx is graphically
presented, as well as the amplitude change in time.

For each amino-acid in chain, choosing of code number takes into account an
organizational structure (helix, plane, random array). Because of the whole effect to
oscillating frequency, two amino-acids with the same oscillating picture can't exist (see
figures 6 and 7).
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Fig. 6.a. Oscillations of peptide plane determined by parts of E and P,
at positions 71-71 in alpha tubuline, in helix.
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Fig. 6.b. Oscillations of peptide plane determined by parts of amino-acid E and P,
at positions 358 -359 in alfa tubuline, in random structure.
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Fig. 7.a. Oscillations of peptide plane determined by parts of amino-acid R and L,
at positions 156-157 in alfa tubuline, in helix.
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Fig. 7.b. Oscillations of peptide plane determined by parts of amino-acid R and L,
at positions 390-391 in alfa tubuline, in helix.
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4. CONCLUSION

The model presented here gives possibility to discover oscillating pictures of chain
with a few thousand atoms. We can calculate frequencies for each atom in skeleton or
associate them to skeleton, but here we follow the peptide-plane oscillation.

The richnes of data can be further used in different purposes. We assume first to
extract the statistics of energy and entropy for peptide plane as quasi-particle.

In the next step we shall focus our attention on these caracteristics of system, because
of border symmetries there exsists the opportunity with a real chance that unexpected
properties can be found for peptide plane as quasi-particle.

Generally, this model is applicable in many other biological structures, and presents a
new approach to analyze behaviour of biomolecules by influence of electromagnetic and
mechanical stress.
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PRIMENA LAGRANGE-OVIH JEDNAČINA NA OSCILOVANJE
PEPTIDNIH RAVNI U AMINO-KISELINSKOM LANCU

Aleksandar Tomić, Željko Ratkaj, Djuro Koruga

Učinjen je pokušaj simuliranja oscilovanja peptidnih ravni – ravanskih formacija u
aminokiselinskom lancu u subjedinicama tubulina. Zbog važenja Curie-simetrija u živim
organizmima bilo je moguće iskoristiti pogodnost primene klasičnih Lagrange-ovih jednačina.
Novi uvedeni metod daje mogućnost za izračunavanje tri medjusobno normalne sopstvene
frekvencije za svaki atom u peptidnoj ravni. Uticaji četiri kontaktna i šest susednih atoma mogu se
obračunati. U oscilovanju lanca pojavljuje se eksplicitno "efekat celine", sa posledicom da ne
postoje dve identične slike oscilovanja u lancu od 450 aminokiselina u subjedinicama tubulina.


