ON GENERALIZATION OF MULTIVARIABLE HARMONIC POLYNOMIALS

UDC 519.145.4(045)

Lazar N. Djordjević¹, Djordje Djordjević², Valentina M. Milićević³

¹Department of Computer Sciences, Faculty of Electronic Engineering
²Department of Mathematics and Informatics, Faculty of Civil Engineering and Architecture, University of Niš, Serbia & Montenegro

Abstract. In this paper is presented a class of multivariable homogeneous orthogonal polynomials, obtained as linear combination of classical generalized Laguerre polynomials. Using them, the generalized harmonic polynomials are defined. It is proven that multivariable harmonic polynomials are particular case of generalized harmonic polynomials.

Key words: Multivariable harmonic polynomials, Multivariable hypergeometric polynomials, Gauss hypergeometric polynomials, Lauricella functions; Laguerre polynomials, Multivariable Appell polynomials; Jacobi shifting polynomials.

1. INTRODUCTION AND PRELIMINARIES

The polynomials in \(r \) variables satisfying Laplace partial equation

\[
\Delta F(x_1, \ldots, x_r) = 0,
\]

where \(\Delta = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_r^2} \) \((r \in \mathbb{N} \setminus \{1\})\) are harmonic. They are used in mechanics, electromagnetic, theory of oscillations, and especially in construction of cubature formulas.

In paper [13] the notes of cubature formulas are common roots of linear combinations of basic orthogonal polynomials \(V_{n-1}^{i}(x,y) \) \((n = 4,6; i = 0,1,\ldots,n)\) for unit circle and weight function equal to one [14, p.169, table 83] and monic Hermite polynomials \(H_{n-1}(x,y) := H_{n}(x)H_{1}(y) \) for the whole plane and weight function \((x,y) \rightarrow w(x,y) := e^{-x^2-y^2}\).
The orthogonal polynomials of fourth degree
\[e := V_{4,0} - 6V_{2,2} + V_{0,4} = x^4 - 6x^2y^2 + y^4, \]
\[f := H_{4,0} - 6H_{2,2} + H_{0,4} = x^4 - 6x^2y^2 + y^4, \]
\[g := V_{3,1} - V_{1,3} = x^3y - xy^3, \]
\[h := H_{3,1} - H_{1,3} = x^3y - xy^3 \]
and the orthogonal polynomials of degree six
\[e_1 := V_{6,0} - 15V_{4,2} + 15V_{2,4} - V_{0,6} = x^6 - 15x^4y^2 + 15x^2y^4 - y^6, \]
\[f_1 := H_{6,0} - 15H_{4,2} + 15H_{2,4} - H_{0,6} = x^6 - 15x^4y^2 + 15x^2y^4 - y^6, \]
\[g_1 := V_{5,1} - \frac{10}{3}V_{3,3} + V_{1,5} = x^5y - \frac{10}{3}x^3y^3 + xy^5, \]
\[h_1 := H_{5,1} - \frac{10}{3}H_{3,3} + H_{1,5} = x^5y - \frac{10}{3}x^3y^3 + xy^5 \]
are harmonic polynomials.

The first author of this paper came to the idea to form linear combinations of the orthogonal polynomials of arbitrary degrees \(n \), which also gave harmonic polynomials of the degree \(n \), used in construction of Gauss’s cubature formulas exact for all polynomials of the degree \(2n-1 \) [2].

By construction of cubature formulas with weight function \((x,y)\rightarrow w(a,b;x,y) := |x|^a |y|^b \varphi(x^2+y^2)\) the polynomials with parameters \(a \) and \(b \), which for \(a = b = 0 \) reduce to harmonic polynomials, are necessary.

In paper [5] the generalization of harmonic polynomials in two variables is realized by considering linear combination of monic generalized Hermite polynomials \(H_n(a,t) \), orthogonal on interval \((-\infty, +\infty)\) with weight function \(t^{|a|}e^{-t^2} \) and defined as [15]

\[H_n(a,t) := L_{\frac{n}{2}}(\frac{a-1}{2})^\frac{a-1}{2} (t^2) \]

where \(L_{\frac{n}{2}}^{(a-1)}(t) = \sum_{i=0}^{\infty} (-1)^i (a+i)_{\frac{n}{2}} t^i \) are monic generalized Laguerre polynomials, orthogonal on \([0, +\infty)\) with weight function \(t^{a-1}e^{-t} \), where \([k]\) denotes the greatest integer in \(k \in \mathbb{R} \) and \((a)_n := a(a+1)\ldots(a+n-1) \) is the Pochhammer symbol (precisely, rising factorial \(n \)-th power of \(a \)), with general definition

\[(a)_{n,d} := \begin{cases} 1, & (n = 0; a \neq 0) \\ a(a+d)\ldots(a+(n-1)d), & (d \geq 0; n \in \mathbb{N}) \end{cases} \]

for which it holds \((a)_n = (a)_{n,1} \).
Also note that

$$a_{n,d} = d^n (\frac{\alpha}{\sigma})_n .$$ (6)

By forming a linear combination of form

$$\sum_{l=0}^{n} (-1)^l \binom{s}{l} (a + 2 + 2 \delta_1 + 2 s - 2 l)_{n,2} (b + 1 + 2 \delta_2 + 2 l)_{s-l,2} H_{2s-2l+\delta_2,2l+\delta_2} (a,b;x,y),$$

where is

$$H_{2s-2l+\delta_2,2l+\delta_2} (a,b;x,y) = H_{2s-2l+\delta_2} (a;x) H_{2l+\delta_2} (b;y)$$

$$:= \sum_{j=0}^{s} \binom{s-j}{j} \binom{s-2+l}{j} \binom{a+1+2j+2 \delta_1}{s-l,j} \binom{b+1+2k+2 \delta_2}{s-l,j} x^{s-j} y^j, \quad (s,N_0; \delta_1,\delta_2 \in \{0,1\}; a,b \in C^+; x,y \in C).$$

one can get the generalized harmonic polynomials [5].

The linear combination of monic generalized Laguerre polynomials,

$$L_i^{(s-l)} (x) L_j^{(b+l)} (y) ,$$

gives the polynomials [4]

$$Z_s (a,b;x,y) = \sum_{l=0}^{s} \binom{s}{l} (a + s - l)(b + l) x^{s-l} y^l , \quad (s \in N_0; a,b \in C^+; x,y \in C).$$

The generalized harmonic polynomials are defined using Z polynomials in the following way

$$H_{(2s+\delta_1, \delta_2)} (a,b;x,y) := 2^s x^{\delta_1} y^{\delta_2} Z_s \left(a + 2 \delta_1, b + 2 \delta_2, \frac{a+1}{2}, \frac{b+1}{2}; x, y \right) , \quad (\delta_1, \delta_2 \in \{0,1\}; \delta = \delta_1 + \delta_2) .$$

The first index is polynomial degree and subscripts indicate parity (even - (2), odd - (1)) of degree of variables x and y, respectively.

In paper [7] is presented algorithm and described program package for symbolic generation of basic orthogonal polynomials in two variables $E_n^{(a,b)} (a,b;x,y)$, $(n = 0,1,...; i = 0,1,...,n)$ over the triangle $T_2 := \{(x,y)|x + y \leq 1; x,y \geq 0\}$, with weight function $(x,y) \rightarrow w(x,y) := x^{a-1} y^{b-1} (1-x-y)^{\alpha} (1-x-y)^{\beta}$, $(a,b > 0; \alpha,\beta > -1)$.

The basic orthogonal polynomials in two variables are related to homogeneous orthogonal polynomials $Z_\delta (a,b;x,y)$ and Jacobi shifted orthogonal polynomials of variable $t := x + y$ with the following equality

$$\| d_{s+1,j+1} \| = \| E_n^{(a,b)} (a,b;x,y) \| = \| Z_s (a,b;x,y) F_n^{(a+b+2s+2a+b-1)} (x+y) \| , \quad (10)$$

where the general element of quadratic matrix of order $n+1$ is of form
monic polynomials are the results given in [1,10,11,12].

The starting point for obtaining of polynomials have been used for construction of cubature formulas of degree up to 11.

In paper [9] Z polynomials in three variables and corresponding generalized harmonic polynomials have been given in [8]. We will be dealing with them in section 3.

Those polynomials are denoted as generalized harmonic polynomials (HG). Define at first a new class of homogeneous polynomials in \(r \) variables as

\[
\text{degree of polynomial}, \quad \text{weight function } \sum_{l=0}^{s} \sum_{t=0}^{l} \sum_{s-t=0}^{r} (-1)^{l+t+s-t} \left[\binom{s-t}{l} \left(\begin{array}{c} l_1 \\ l_2 \\ \vdots \\ l_{r-2} \end{array} \right) \binom{t-r-1}{l_{r-2}} \right] \\
(a_1 + s - t_1 - l_1) (a_2 + t_1 - t_2 - l_2) \ldots (a_{r-1} + t_{r-2} - l_{r-2}) (a_r + l_1 + l_2 + \ldots + l_{r-2})_{s-l_1-\ldots-l_{r-1}},
\]

(\(s \in N, t_i = 0, 1, \ldots, s; l_j = 0, 1, \ldots, l_{i+1} ; i = 2, \ldots, r - 2 \)).
The whole number of Z polynomials of degree s is \(h(s,r) = \binom{s + r - 2}{r - 2} \).

Z polynomials have the following features:

- Z polynomials are part of right hand side of generalized multinomial formula

\[
\sum_{\alpha_0=0}^{n_0} \ldots \sum_{\alpha_r=0}^{n_r} \sum_{r=0}^{l_2-2} \ldots \sum_{r=0}^{l_r-2} \binom{s-
\alpha_i-t_2}{l_1} \binom{t_2}{l_2} \binom{t_r-2-l_{r-2}}{l_{r-2}} \binom{l_{r-2}}{l_{r-1}}
\]

which for s = 0 becomes classical multinomial formula;

- Z polynomials are part of right hand side of functional relation

\[
\sum_{\alpha_0=0}^{n_0} \ldots \sum_{\alpha_r=0}^{n_r} \sum_{r=0}^{l_2-2} \ldots \sum_{r=0}^{l_r-2} (-1)^{\alpha_0+\ldots+\alpha_r+l_1} \binom{s-t_2}{l_1} \binom{t_2}{l_2} \binom{t_r-2-l_{r-2}}{l_{r-2}} \binom{l_{r-2}}{l_{r-1}}
\]

where monic Lauricella’s polynomial \(G_{n_0,\ldots,n_r;\ldots;\ldots;\alpha_0,\ldots,\alpha_r} \) is defined as

\[
G_{n_0,\ldots,n_r;\ldots;\ldots;\alpha_0,\ldots,\alpha_r} = (-1)^n \binom{a_0}{\alpha_0} \binom{a_1}{\alpha_1} \ldots \binom{a_r}{\alpha_r}
\]

and monic Gauss's hypergeometric polynomial \(G_{n_0,\ldots,n_r;\ldots;\ldots} \) as
\[G_{n-r}(\lambda + s, a_1 + \ldots + a_r + 2s; x_1 + \ldots + x_r) \]
\[= (-1)^{n-r} (a_1 + \ldots + a_r + 2s)_{n-r} \binom{\lambda + s - n + s; a_1 + \ldots + a_r + 2s; x_1 + \ldots + x_r}{(\lambda + s + i)_{n-r-i}} \]
\begin{equation}
\sum_{i=0}^{n-r} (-1)^{n-r-i} \binom{n}{i} \binom{a_1 + \ldots + a_r + 2s + i}{(\lambda + s + i)_{n-r-i}} (x_1 + \ldots + x_r)^i.
\end{equation}

Relation (14) for \(s = 0 \) reduces to functional relation [12, p.359, Eq.(4.8)]
\[\sum_{n_1 + \ldots + n_r = n} \left(\prod_{i=1}^{r} \binom{n_i}{a_i} \right) F^{(a_1)}_{n_1} \cdots F^{(a_r)}_{n_r} (\lambda; x_1 + \ldots + x_r) \]
\begin{equation}
= (A)_{n-r} F_0^{(a_1)} (\lambda; x_1 + \ldots + x_r)
\end{equation}

\((A := a_1 + \ldots + a_r; n, n_j \in N_0; A, a_j \notin Z^-; j = 1, \ldots, r)\).

- **Z polynomials** can be obtained as linear combinations of classical monic Laguerre’s polynomials \(l^{(a_i)}_{n_i} \), what follows from the next functional relation
\[\sum_{l=0}^{n-r} \sum_{l_i = 0}^{l-i} \sum_{l_{r-1} = 0}^{l_{r-2}} \cdots \sum_{l_{r-1} = 0}^{l_{r-2}} (-1)^{l_i + \ldots + l_{r-2}} \binom{s-t}{} \binom{l}{l_i} \binom{l_i - t_{r-2}}{l_{r-2}} (a_1 + s - t_i - l_i; a_2 + t_i - t_{r-2} + \ldots - t_{r-2} - l_{r-1}) \cdots (a_r + l + l_i + \ldots - l_{r-2} - l_{r-1}) (x_i) = Z^{(a_1, a_2, \ldots, a_r)}_{(x_1, x_2, \ldots, x_r)} (a_1, a_2, \ldots, a_r; x_1, \ldots, x_r)\]
which can be proven by mathematical induction;

- **Polynomials** \(Z^{(a_1, a_2, \ldots, a_r)}_{(x_1, x_2, \ldots, x_r)} \) are in connection with Lauricella hypergeometric function \(F^{(a)}_{B} [a_1, a_2, b_1, b_2; x_1, x_2] \) by relation
\[Z^{(a_1, a_2, \ldots, a_r)}_{(x_1, x_2, \ldots, x_r)} (a_1, a_2, \ldots, a_r; x_1, \ldots, x_r) = \]
\[(-a_1 - s + t_i - l_i; a_2 + t_i - t_{r-2} + \ldots - t_{r-2} - l_{r-1}) \cdots (a_r + l + l_i + \ldots - l_{r-2} - l_{r-1}) (x_i)
\]
\begin{equation}
= \binom{s-t}{l} \binom{l_i - t_{r-2}}{l_{r-2}} \binom{l_{r-2} - t_{r-3}}{l_{r-3}} \cdots \binom{1}{l_1} \binom{1}{l_{r-1}} \binom{1}{x_i} \frac{x_i}{1} \frac{x_i}{x_{i-1}} \frac{x_i}{x_{i-2}} \cdots \frac{x_i}{x_1}.
\end{equation}

- Using \(Z^{(a_1, a_2, \ldots, a_r)}_{(x_1, x_2, \ldots, x_r)} \) polynomials, the generalized harmonic polynomials of \(r \) variables can be defined as follows
\[H^{(2 \delta_1, 2 \delta_2, \ldots, 2 \delta_r)}_{(x_1, x_2, \ldots, x_r)} (a_1, a_2, \ldots, a_r; x_1, \ldots, x_r) \]
\begin{equation}
= 2^r x_1^{\delta_1} \cdots x_r^{\delta_r} Z^{(2 \delta_1, 2 \delta_2, \ldots, 2 \delta_r)}_{(x_1, x_2, \ldots, x_r)} \left(\frac{a_1 + 2 \delta_1 + 1}{2}, \ldots, \frac{a_r + 2 \delta_r + 1}{2}; x_1^2, \ldots, x_r^2 \right)
\end{equation}
\((\in N_0; t_i = 0, 1, \ldots, s, t_j = 0, 1, \ldots, t_{i-1} \forall i = 2, \ldots, r - 2; \delta_j \in \{0, 1\}; j = 1, \ldots, r; \delta := \delta_1 + \ldots + \delta_r)\).
In case when all degree of variables are even, (20) reduces to

\[H_{G_2}^{(2s,r_1,...,r_s)}(a_1,...,a_r; x_1,...,x_r) \]
\[:= 2^s Z^{(s,r_1,...,r_s)}(\frac{a_1+1}{2},...,\frac{a_r+1}{2}; x_1^2,...,x_r^2). \]

The second case appears when degree of variable \(x_1 \) is odd and the rest of degrees are even

\[H_{G_1}^{(2s+1,r_2,...,r_s)}(a_1,...,a_r; x_1,...,x_r) \]
\[:= 2^s x_1 Z^{(s,r_2,...,r_s)}(\frac{a_1+3}{2},...,\frac{a_r+1}{2}; x_1^2,...,x_r^2). \]

At least, \(2^s \)-th case appears when all degrees of variable \(x_i \) are odd

\[H_{G_1}^{(2s+1,r_2,...,r_s)}(a_1,...,a_r; x_1,...,x_r) \]
\[:= 2^s x_1 x_2 Z^{(s,r_2,...,r_s)}(\frac{a_1+3}{2},...,\frac{a_r+3}{2}; x_1^2,...,x_r^2). \]

Using identity (6) for \(d = 2 \) the generalized harmonic polynomials can be written in developed form:

\[H_{G_2}^{(2s, r_1, r_2, ..., r_s)}(a_1, ..., a_r; x_1, ..., x_r) \]
\[:= \sum_{l_i=0}^{s-l} \sum_{l_j=0}^{l_i} \sum_{l_k=0}^{l_j} \sum_{l_m=0}^{l_k} (-1)^{l_1+...+l_s} \left(l_1 \choose l_2 \right) \left(l_2 \choose l_3 \right) \left(l_3 \choose l_r \right) \]
\[\left(\sum_{j=1}^{s} a_j + 2 \delta_j \right) \left(\sum_{j=1}^{r} x_j \right) \]
\[\sum_{j=1}^{s} x_j \left(\sum_{j=1}^{r} x_j \right) \delta \]
\[(r \in N; \delta = 0, ..., R - 2; \delta_j \in \{0, 1\}; \delta_j = 1, ..., r - 2; \delta_j \in \{0, 1\}; j = 1, ..., r; \delta_j = \delta_1 + ... + \delta_j), \]

where is

\[\binom{n_1 + ... + n_r}{n_1, ..., n_r} = \frac{(n_1 + ... + n_r)!}{n_1!...n_r!}. \]
Involving the normalization factor of form
\[K_{2-\delta,\ldots,2-\delta} = \frac{2^{2s} s!(2s + \delta_r + 1)!}{(2s - 2t_1 + \delta_1)!(2t_1 - 2t_2 + \delta_2)\ldots(2t_{r-3} - 2t_{r-2} + \delta_{r-2})!(2t_{r-2} + \delta_{r-1})!} \]
harmonic polynomials in \(r \) variables can be obtained using polynomials
\[Z^{(s,\delta_1,\ldots,\delta_r)}(\delta_1 + \frac{1}{2}, \ldots, \delta_r + \frac{1}{2}; x_1^2, \ldots, x_r^2) \], what follows from the next theorem.

Theorem 1. Harmonic polynomials in \(r \) variables \(H^{(2s+\delta,\delta_r,\ldots,\delta_r)}_{2-\delta,\ldots,2-\delta}(x_1, \ldots, x_r) \) and polynomials \(Z^{(s,\delta_1,\ldots,\delta_r)}(\delta_1 + \frac{1}{2}, \ldots, \delta_r + \frac{1}{2}; x_1^2, \ldots, x_r^2) \) are connected with the identity
\[H^{(2s+\delta,\delta_r,\ldots,\delta_r)}_{2-\delta,\ldots,2-\delta}(x_1, \ldots, x_r) = K_{2-\delta,\ldots,2-\delta} Z^{(s,\delta_1,\ldots,\delta_r)}(\delta_1 + \frac{1}{2}, \ldots, \delta_r + \frac{1}{2}; x_1^2, \ldots, x_r^2). \] (23)

Proof. From \(Z^{(s,\delta_1,\ldots,\delta_r)}(\delta_1 + \frac{1}{2}, \ldots, \delta_r + \frac{1}{2}; x_1^2, \ldots, x_r^2) \) polynomial definition, the right hand side in Theorem can be written in the developed form
\[2^{2s} s!(2s + \delta_r + 1)!b^\delta \sum_{l_1=0}^{s-t_1-1} \sum_{l_2=0}^{t_2} \sum_{l_r=0}^{t_r} (-1)^{s-t_1-l_1+1} \binom{s-t_1}{l_1} \binom{t_2}{l_2} \binom{t_r}{l_r} \]
\[(s-t_1-l_1+\frac{1}{2})(t_1-t_2-l_2+\delta_2+\frac{1}{2}) \ldots (t_{r-3}-l_{r-2}+\delta_{r-2}+\frac{1}{2}) \]
\[(l_1+\ldots+l_{r-1}+\delta_3+\frac{1}{2}) x_1^{2s-2t_1-2l_1+\delta_1} x_2^{2t_1-2t_2-2l_2+\delta_2} \ldots x_{r-1}^{2t_{r-3}-2t_{r-2}+\delta_{r-2}} x_r^{2t_{r-2}+\delta_{r-1}}. \] (24)

Using formulas
\[(m+n)! = \frac{(2n+m+d)!}{(m+n)!}(m+d)! \] and
\[\binom{m}{i} = \frac{m!}{(m-i)!i!} \] \((d \in \{0,1\})\)
and after obvious simplifications and using identity \((2s + \delta_r)! \binom{s+\delta_r+1}{s+\delta_r} = (2s + \delta)!\), the previous relation reduces to the right hand side of (22). \(\square\)

Involving parameters \(\delta_i (i = 1, \ldots, r) \) values from the set \{0,1\}, one can obtain \(2^r\) different harmonic polynomials.

3. Trivariable Z Polynomials and Harmonic Polynomials

We will especially deal with \(Z \) polynomials, generalized harmonic \(H_G \) and harmonic \(H \) polynomials of three variables, because this case is the most interesting for application. The case of two variable was enquired in papers [2,3,4,5,6].

For \(r = 3 \), \(t_1 = t, a_1 = a, a_2 = b, a_3 = c, x_1 = x, x_2 = y, x_3 = z \) the following relations and formulas hold:
\[Z^{(s,3)}(a,b,c;x,y,z) \]
\[:= \sum_{l_1=0}^{i-s} \sum_{l_2=0}^{i-l_1} (-1)^{i-l_1} \binom{s-t}{l_1} \binom{a+s-t-l_1}{l_2} (b+t-l_2)_{l_1} \]
\[(c+l_1+l_2)_{i-l_1-l_2} x^{s-t-l_1} y^{i-l_1} z^{l_1}, \]
\[(s \in N_0; t = 0,1,\ldots; s,a,b,c \in C^*; x,y,z \in C). \]

The overall number of \(Z \) polynomials of degree \(s \) is \(s+1 \).

\(Z \) polynomials have the following features:

- \(Z \) polynomials are part of the right hand side of generalized trinomial formula

\[\sum_{i=0}^{n} \sum_{j=0}^{l} \sum_{k=0}^{i} (-1)^{i-k} \binom{s-t}{i} \binom{n-s}{j} \binom{i-l_1-t}{k} (a+s-t-l_1)_{i} (b+t-l_2)_{j} (c+l_1+l_2)_{i-l_1-j} x^{s-t} y^{i-t} z^{j}, \]

where for \(s=0 \) becomes classical trinomial formula;

- \(Z \) polynomials are part of the right hand side of functional relation

\[G_{n-i-j,l}(\lambda,a,b,c;x,y,z) \]

and monic Gauss hypergeometric polynomials \(G_{a+b+c+2s; x+y+z} \) as

\[G_{a+b+c+2s; x+y+z} \]

and

\[G_{a+b+c+2s; x+y+z} \]

with monic Lauricella’s polynomials \(G_{n-i-j,l}(\lambda,a,b,c;x,y,z) \) defined as

\[G_{n-i-j,l}(\lambda,a,b,c;x,y,z) \]

and monic Gauss hypergeometric polynomials \(G_{a+b+c+2s; x+y+z} \) as

\[G_{a+b+c+2s; x+y+z} \]

and

\[G_{a+b+c+2s; x+y+z} \]

with monic Lauricella’s polynomials \(G_{n-i-j,l}(\lambda,a,b,c;x,y,z) \) defined as

\[G_{n-i-j,l}(\lambda,a,b,c;x,y,z) \]

and monic Gauss hypergeometric polynomials \(G_{a+b+c+2s; x+y+z} \) as

\[G_{a+b+c+2s; x+y+z} \]

and

\[G_{a+b+c+2s; x+y+z} \]
• Z polynomials can be obtained as linear combinations of classical monic Laguerre's polynomials $L_n^{(a-1)}(t)$, what follows from the next functional relation
\[
\sum_{l_1=0}^{l} \sum_{l_2=0}^{l_1} (-1)^{l_1} \binom{s-t}{l_1} \binom{t}{l_2} (a+s-t-l_1)_{l_1} (b+t-l_2)_{l_2} (c+l_1 + l_2)_{l_1-l_2} t^{(a-1)}_{s-l_1-l_2} (x)L_{l_1-l_2}^{(b-1)}(y)L_{l_1}^{(c-1)}(z)
= Z^{(s,33)}(a,b,c; x, y, z),
\]
which can be proven by mathematical induction;

• Z polynomials are in connection with Appell’s hypergeometric function $F_3(a_1,a_2,b_1,b_2;c;x,y)$ by relation
\[
Z^{(s,33)}(a,b,c; x, y, z) = (c)_x x^{-l_2} y^{l_1} F_3(-s+t,-t,-a-s+t+1,-b+t+1; c-\frac{z}{x}, -\frac{z}{y})
\]
\[
= (c)_x x^{-l_2} y^{l_1} \sum_{l=0}^{l} \frac{(-s+t)_l (-t)_l (-a-s+t+1)_l (-b+t+1)_l}{(c)_{l_l}}
\]
\[
= \left(\frac{z}{y}\right)^{l_1} \left(\frac{-z}{x}\right)^{l_2} \frac{l_1!}{l_2!}.
\]

Using $Z^{(s,33)}(a,b,c; x, y, z)$ polynomials, the generalized harmonic polynomials of three variables can be defined as follows.

\[
H_{G2,2-\delta,2-\delta,2-\delta}(a,b,c; x, y, z) := 2^{x^2} x^{\delta_1} y^{\delta_2} z^{\delta_3} Z^{(s,33)}(a+2\delta_1+1, b+2\delta_2+1, c+2\delta_3+1; x^2, y^2, z^2)
\]
\[
(s \in N_0; t = 0,1,\ldots; \delta_1, \delta_2, \delta_3 \in \{0,1\}; \delta := \delta_1 + \delta_2 + \delta_3).
\]

The first index is polynomial degree, t is polynomial order, and subscripts indicate parity (even - (2), odd - (1)) of degree of variables x, y, z, respectively.

Using identity (6) for $d = 2$, the generalized harmonic polynomials can be written as follows.

\[
H_{G2,2-\delta,2-\delta,2-\delta}(a,b,c; x, y, z) := \sum_{l_1=0}^{s-t} \sum_{l_2=0}^{l_1} (-1)^{l_1} \binom{s-t}{l_1} \binom{t}{l_2} (a+2\delta_1+1+2s-2t-2l_1)_1,2
\]
\[
(b+2\delta_2+1+2s+2t-2l_2)_1,2 (c+2\delta_1+1+2l_1+2l_2)_{s-l_1-l_2}
\]
\[
= x^{2s-2l_1+\delta_1} y^{2s-2l_2+\delta_2} z^{2l_1+2l_2+\delta_3}.
\]
The harmonic polynomials of three variables can be defined using following formula
\[\sum_{\ell=0}^{r} \sum_{l=0}^{s} (-1)^{\ell+l} \binom{s+t}{l_1, l_2, t-l_1-l_2} \frac{2s+\delta}{2s-2t-2l_1 + \delta_1, 2t-2l_2 + \delta_2, 2l_1 + 2l_2 + \delta_3} \] (35)

Involving the normalization factor of form \(K_{2-\delta, 2-\delta, 2-\delta} = \frac{2^{2s} s!(2s + \delta_1 + 1)_{\delta_1+\delta}}{(2s - 2t + \delta_1)(2t + \delta_2)!} \), harmonic polynomials of three variable can be obtained using polynomials \(Z^{(s,2)}(a,b,c;x,y,z) \). It follows from the next.

Theorem 2. Harmonic polynomials of three variable \(H^{(2s+\delta,3,2)}_{2-\delta,2-\delta,2-\delta}(a,b,c;x,y,z) \) and polynomials \(Z^{(s,2)}(\delta_1 + \frac{1}{2}, \delta_2 + \frac{1}{2}, \delta_3 + \frac{1}{2}, x^2, y^2, z^2) \) are connected with the identity
\[H^{(2s+\delta,3,2)}_{2-\delta,2-\delta,2-\delta}(a,b,c;x,y,z) = K_{2-\delta,2-\delta,2-\delta} x^{\delta_1} y^{\delta_2} z^{\delta_3} Z^{(s+1,3)}(\delta_1 + \frac{1}{2}, \delta_2 + \frac{1}{2}, \delta_3 + \frac{1}{2}, x^2, y^2, z^2). \] (36)

Proof. Using definition of polynomials \(Z^{(s,2)}(\delta_1 + \frac{1}{2}, \delta_2 + \frac{1}{2}, \delta_3 + \frac{1}{2}, x^2, y^2, z^2) \), the right hand side in Theorem can be written in the developed form
\[\frac{2^{2s} s!(2s + \delta_1 + 1)_{\delta_1+\delta}}{(2s - 2t + \delta_1)(2t + \delta_2)!} \sum_{\ell=0}^{r} \sum_{l=0}^{s} (-1)^{\ell+l} \binom{s+t}{l_1, l_2, t-l_1-l_2} \left(s-t \right) \left(t \right) \] (37)

Using formulas (25) after obvious simplifications and using identity
\[(2s + \delta)! = (2s + \delta_1)!/(2s + \delta_1 + 1)_{\delta_1+\delta}, \] (38)

the previous relation becomes
\[\sum_{\ell=0}^{r} \sum_{l=0}^{s} (-1)^{\ell+l} \binom{s+t}{l_1, l_2, t-l_1-l_2} \left(s-t \right) \left(t \right) \] (39)
After taking usual prefixes for polynomial coefficients, the polynomials $H^{(2+\delta,3\delta)}_{2-\delta_1,2-\delta_2,2-\delta_3}(a,b,c;x,y,z)$ are obtained, and the Theorem is proven. □

Involving values from the set $\{0,1\}$ to parameters δ_1, δ_2, δ_3, one can obtain eight different harmonic polynomials.

REFERENCES

O GENERALIZACIJI HARMONIČNIH POLINOMA VIŠE PROMENLJIVIH

Lazar N. Djordjević, Djordje Djordjević, Valentina M. Milićević

U ovom radu je predstavljena jedna klasa homogenih ortogonalnih polinoma više promenljivih koja se dobija kao linearna kombinacija klasičnih generalisanih Laguerroevih polinoma. Pomoću njih su definisani generalisani harmonični polinomi. Dokazano je da su harmonični polinomi više promenljivih partikularni slučajevi generalisanih harmoničnih polinoma.