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Abstract. An implicit stress integration procedure for the Gurson material model – the
metal plasticity with volumetric plastic strain – and for large strain shell deformation is
presented in the paper. The stress calculation is based on the governing parameter
method (GPM), with the increment of the mean plastic strain ∆eP

m taken as the
governing parameter. The shell condition (the zero stress through shell thickness) is
satisfied at the end of time (load) step and the problem is reduced to solving the
nonlinear equation with respect to ∆eP

m. The procedure is robust and computationally
efficient. The conversion of the shell solution to the general 3-D conditions provides
implementation of the 3-D consistent tangent elastic-plastic matrix.
The small strain stress calculation procedure is extended to the large strain shell
deformation. The multiplicative decomposition of the deformation gradient and the
logarithmic strains are employed. This extension is based on a simple implementation
of the 3-D kinematics relations to the shell conditions.
The solved numerical examples illustrate accuracy and the effectiveness of the
proposed procedure.

Key words: Gurson model, Implicit stress integration, the governing parameter method,
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1. INTRODUCTION

The development of material models that adequately represent the material behavior
have been one of the fundamental tasks of the experimental and theoretical investiga-
tions, starting from Tresca 1884 [1], von Mises 1913 [2] and Hill 1950 [3]. The im-
provements of the earlier material models and formulation of the new ones last over dec-
ades and continue today. The description of various constitutive models, with emphasis to
the geological materials, is given in [4]-[7], among others. Metal plasticity, viscoplastic-
ity and creep models are described in, for example, [8]-[11]. We will further describe in
detail a model for porous metal, introduced by Gurson [12] and modified by Tvergaard
[13] and [14].
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On the other hand, the developments of the numerical methods for the accurate
calculation of the material response with the use of the material models, have become a
very important field in the computational mechanics community, especially within the
finite element method (FEM). First methods of solving elastic-plastic deformation of
metals were of the iterative type (successive elastic solutions) [15], [8]. The first methods
within the displacement based FE procedures were explicit (e. g. [10]), and later, in the
80’ s, the implicit methods were developed. The implicit methods of stress integration in
time step for inelastic material models ensure higher accuracy and, with calculation of the
consistent tangent module, provide a dramatic improvement of the convergence rate with
respect to the explicit methods. The implicit stress integration procedures are described in
[16] and [17] for a number of material models. A review of the stress integration
procedures is presented in [18].

An algorithm for implicit stress integration of the Gurson model in case of general 3-
D small and large strain deformations is proposed in [19]. The algorithm is based on the
governing parameter method (GPM) [20], which is a generalization of the effective-
stress-function algorithm developed for thermoplastic and creep deformation of metals
[21], [22]. Here we generalize the procedure proposed in [19] to shell (plane stress)
conditions for small and large strains. For the completeness of this work, we further
summarize the basic expressions that describe the Gurson model.

According to [12]-[15] the yield condition fy = 0 for the Gurson model has the form
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where σy is the yield stress of the material, σm is the mean stress, f * is a function of the
void volume fraction (porosity)  f ; q1, q2 and q3 are material constants, and

ijijSS=⋅SS    (2)

Here Sij are the components of the stress deviator, and summation on the repeated
indices is assumed (i, j = 1,2,3). The function f * of the void volume fraction is given by
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where fc is the critical void volume fraction when the onset of rapid volume coalescence
begins, and
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Here ff  is value of f at material failure. Then we have f * = 1/q1, and from (1) follows
(for q1 = q3) that the effective stress 0)2/3( 2/1 ==σ ijij SS  for σm = 0. Note that in case
of f * = 0 the yield condition (1) reduces to the von Misses yield condition with isotropic
hardening behaviour.

In general, the rate of change of porosity can be written as [23]
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where ,, NG ff  and Cf  correspond to the void growth, nucleation and coalescence,
respectively. Assuming that the material matrix is practically incompressible and
neglecting the elastic part of the void volume, the rate of void volume growth Gf  can be
expressed as

P
VG eff )1( −=    (6)

where P
Ve  is the plastic volumetric strain rate. If the nucleation of voids is dominated by the

maximum normal stress, the rate of void nucleation Nf  can be written in the form [24], [25]
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where K̂  is a dimensionless material parameter. This parameter can also be expressed in
an analytical form that involves the yield stress σy and the mean stress σm , obtained
through the statistical distribution of σy and σm . In case of nucleation dominated by the
plastic strain, Nf  can be written as [25]

P
N eAf =    (8)

where A can be either a material constant, or it can be chosen such that the void
nucleation follows a normal distribution. In the latter case the coefficient A is
























 −−
π

=
2

2
1exp

2 N

N
P

N

N

s
ee

s
aA    (9)

where aN is the amplitude, sN is the standard deviation, Pe  is the accumulated effective
plastic strain, and Ne  is the mean effective plastic strain of the normal distribution of the
void nucleation. Finally, the rate of void coalescence Cf  is proportional to the effective
plastic strain rate, as it is Nf  in equation (8), i.e.

P
C eBf = (10)

 The paper is organized as follows. In the next section we present the stress
integration procedure for the shell small strain conditions, and then extend it to the large
strain deformation in Section 3. Numerical examples are given in Section 4 and, finally,
some concluding remarks are given in Section 5.
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2. STRESS INTEGRATION PROCEDURE

We consider a shell deformation under the assumption of small strains. The basic
geometry of shell finite element is shown in Fig.1 [26]-[28]. The position vector t X at
time "t" of a material point can be expressed as

2
t t k t k

k k k n
th h a= +x X V (11)

where t X k are the position vectors of nodal points, hk(r,s) are the isoparametric
interpolation functions of the in-plane natural coordinates r,s; t k

nV  are the shell unit
normal vectors, t is the natural coordinate in the shell normal direction, and k = 1,...,N are
the node numbers. The increment of the displacement vector ∆u in time step ∆t is
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where k∆U  are the nodal point displacement increments, and k∆φ  are the increments of
rotations.

 

Fig. 1. Geometry and basic kinematics of shell finite element

Using the relation
Δt+ t t= + ∆x x u         (13)

we have that the coordinates txi , t+∆t xi and the displacement increments ∆ui are expressed
in terms of the nodal point values and the natural coordinates r, s, t. Therefore, by the
proper differentiation we can find the strains in the global coordinate system
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for a given position (time).
The crucial condition in the shell analysis is that the normal stress through the shell

thickness must be equal to zero. Hence, in the stress calculation we must satisfy the
condition

0t t
zz

+∆ σ = (15)

where the local z-axis is in the direction of the shell normal. It follows that we have to
perform the stress integration in the local shell coordinate system. We further assume that
the strains t+∆t eij, obtained by the tensorial transformation of the components (14), are
known. For simplicity of writing we denote by x, y, z the local shell Cartesian coordinate
system.

In order to develop the computational procedure for the stress calculation, we first
define the incremental relations for the increments of plastic strains ∆eP and for the
porosity ∆f. From the flow rule
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We write (5) in the incremental form and use  (6), (8) and (10) to obtain
PP

m
tt eBAeff ∆++∆−=∆ ∆+ )()1(3 (20)

If the evolution equation (7) is used instead (8), we have
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In further derivations we will employ (20), with the use of A instead A + B. From (20)
we obtain
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It is further assumed that the equivalence of plastic work is applicable [29]. Using the
general loading and uniaxial loading conditions, we obtain
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Written for the end of time step, this equation has the form
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where the relation (18) is used
In the summary of the basic relations, we state that the yield condition at the end of

time step must be satisfied, i. e.
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where the yield stress y
t σ∆+ is related to Ptt e∆+ by the yield curve of the material,
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In order to satisfy the shell condition (15), the constitutive relations for the normal
components of the deviatory  t+∆t S are [22]
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where ν , E, G are Poisson’s ratio, Young’s modulus and the shear modulus, respectively.
The constitutive relations for the shear components have the same form as for the 3-D
deformation,
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where E
ij

tt S∆+  corresponds to the elastic solution (no plastic flow in the current time step).
Following the governing parameter method we select the increment of plastic strain

∆eP
m to be the governing parameter, as the most appropriate. Then, we can calculate ∆f

from (22) and *t t f+∆  from (3),
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We next determine the increment of the effective plastic strain Pe∆ . Namely, with
the selected ∆eP

m we can iterate on Pe∆ until one of the conditions, (24) or (25), is
satisfied. In these iterations we assume Pe∆  and determine t t

y
+∆ σ  from the yield curve

(26), then 't t
yf+∆  from (19), ∆λ from (17); and t t

ijS+∆  from (27), (28) and (31). Note that in

the iteration on Pe∆  we use initially the value  t t
m
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where t t E
m

+∆ σ  represents the elastic mean stress. During the iterations on Pe∆ we enforce
the condition (28). Iterations on ∆eP

m continue until the condition not used for the
iterations on Pe∆ is satisfied ((24) or (25)). Table 1 summarizes the computational steps
for the stress integration.

Table 1. Computational steps for stress integration
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4. Next time step
5. Update the variables and go to step 1
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The consistent tangent elastic-elastic matrix t t EP+∆ C  can be determined according to
the GPM [17], [30] as
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where the first term corresponds to constant governing parameter p. As shown above, the
governing parameter for the Gurson model is ∆eP

m  . The derivatives ( )p t t
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where " ' " stands for ( )P
me∂ ∂ ∆ . These expressions correspond to the general 3-D

deformation, with the explicit forms of the terms given in [19]. In order to employ the 3-
D terms we first convert the shell to the general 3-D conditions. After t t EP+∆ C  (33) is
evaluated in the local shell coordinate system, the static condensation must be performed
to obtain the shell tangent elastic – plastic matrix in this system.

3. EXTENSION TO LARGE STRAINS

We extend the above stress integration procedure to the large strains following Refs.
[19] and [31]. Namely, we employ the multiplicative decomposition of the deformation
gradient and the logarithmic strains. According to the multiplicative decomposition of the
deformation gradient [32], [33] we have
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where 0 0 0andt t E t PF, F F  are the deformation gradient, elastic deformation gradient, and
plastic deformation gradient, respectively. The deformation gradients used in further
calculations 0
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where = ∂ ∂J x r are the Jacobins of the coordinate transformation
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As in case of a general 3-D deformation, we calculate the trial elastic deformation
gradient 0 *

t t E+∆ F  as
0 0
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where 0 1
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corresponding to Eσtt ∆+  in step 2 of  Table 1. Further computational steps are the same
as for the small strain conditions.

After the stress σσσσtt ∆+  has been determined, we need to update the left Cauchy-Green
tensor Btt ∆+

0 . We calculate the elastic strains as
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A
tt p∆+  are the principal strains and principal vectors corresponding to

the elastic strains Ett e∆+
0  (44). Using this procedure for calculation of Ett B∆+

0 we
properly follow the condition (15).

Change of the shell thickness must be taken into account in the large strain shell
deformation. With the use of the logarithmic strain definition, we obtain that the shell
thickness at the end of time step t +∆ta, is

)exp( 33eaa ttt ∆=∆+ (46)

where ∆e33 is the strain increment in the shell normal direction.
The calculation of the tangent elastic-plastic matrix may be performed as for the small

strain conditions. The improvement of the tangent character of this matrix can be achieved by
adding the part corresponding to proper differentiations of the geometrical terms, e.g. [34].

4. EXAMPLES

4.1 Necking of a thin sheet

A thin sheet, with very small imperfection progressing from the ends toward the
sample central cross-section, is loaded axially. Two FE models are employed: (1) 3-D
solid element model, and (2) shell element model. The geometrical data are as given in
[35] and [36]. Material data  are given in Fig.2(a). One quarter of the sample is modelled
due to symmetry.
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We have solved this problem by 150 equal steps with prescribed displacements of the
sample end. The final deformed configuration for the shell model is shown in Fig.2(a).
The force-end displacement diagram is shown in Fig. 2(b). Figure 2(c) shows change of
porosity during deformation at the central cross-section of the sample (porosity at the
points on the central line is practically the same).

The results obtained by the both FE models are the same, demonstrating the
correctness and accuracy of the proposed algorithm for the shell conditions.

E = 201 GPa; ν = 0.3
4993.0).(200.45.444 pey +=σ

q1 = q3 = 1.5; q2 = 1; f0 = 0.002

a)

b) c)

Fig. 2. Necking of a thin sheet:
a) Deformed configuration for the shell model
     with the field of  effective plastic strain
b) Force-displacement dependence
c) Change of porosity in the central cross-section
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4.2 Plastic bulging of a circular plate under pressure

A circular plate connected to the rigid wall by the hinge at the outer radius is
subjected to the normal pressure increasing with time. The geometrical and the material
data are as follows:

R = 24 mm, δ = 1.00 mm

E = 68 Gpa , 5993.0).(200.45.144 pey +=σ , ν=0.3,  q1 = q3  = 1.5; q2  = 1; fo = 0.002
The final solution is obtained by using 100 constant increments of pressure. The final

deformed configuration, with the field of the vertical displacement is shown in Fig.3 (a),
while the dependence of the pressure on displacement and change of porosity during
deformation of the central point are given in Figs. 3(b), (c), respectively.

a)

b) c)

Fig. 3. Plastic bulging of a circular plate
a) Deformed configuration with the field of vertical displacement
b) Pressure - central displacement dependence
c) Change of porosity at the central point
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This example was also solved using 2-D axisymmetric FE model, with the large strain
formulation [19], and the same solution was obtained. Since the two FE formulations (3-
D shell and axisymmetric finite elements) are different, the agreement between the results
shows the correctness of the shell solution.

4.3 The tension of plate with hole

The plate of unit thickness with geometrical and material data shown in Fig. 4 a) is
subjected  to a uniform tension at two sides. Due to symmetry in geometry, boundary
conditions and loading, only one-quarter is modelled using 8-node shell (plane stress).

The solution is obtained by using prescribed displacements of the plate edge with the
30 equal increments ∆uy = 0.01 mm per step. Figure 4 b) shows the final deformed
configuration with the effective stress field. The effective plastic strain and porosity at the
point B during loading as functions of time (load) steps are shown in Figs. 4 c) and d),
respectively.

Table 2 shows unbalanced energy and unbalanced force during equilibrium iterations.
The same results are obtained by implementing the 3-D finite element model.

Table 2. Unbalanced energy during equilibrium iterations (step 30)

Iteration Unbalanced
energy

Unbalanced
force

1 17.14 100 5.24
2 8.33 10-2 2.28 10-2

3 5.162 10-4 1.05 10-2

4 9.10 10-5 3.47 10-3

5. CONCLUDING REMARKS

We have proposed a computational algorithm for stress integration for the Gurson
model and the shell deformation. The algorithm represents a simple modification of the
one for the general 3-D deformation [19] to include the condition of the zero-stress
through the shell thickness. The robustness, accuracy and efficiency of the 3-D algorithm
is retained. Computation of the consistent tangent elastic-plastic matrix is the same as for
the 3-D conditions, except that the shell solution has to be converted first to these general
conditions, and then the static condensation must be applied.

A straightforward extension of the small strain algorithm to the large strain shell
deformation is proposed. This simplicity relies on the simple modification of the 3-D
large strain kinematics of deformation to the shell FE assumptions. Following this
approach, the algorithm based on the multiplicative decomposition of the deformation
gradient and on the logarithmic strains is developed.

The solved numerical examples verify the proposed numerical procedure.
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E = 201 GPa; ν = 0.3,
4993.0).(200.45.444 pey +=σ

q1 = q3 = 1.5; q2 = 1; f0 = 0.002

L=120 mm   B= 20 mm  d=10 mm

a)

b)

c)

Fig. 4. The tension of plate with a hole
a) Geometrical and material data
b) Deformed configuration with the field of  effective stress (step 30)
c) The effective plastic strain and porosity at the point B
    as functions of time (load) steps
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ALGORITAM IMPLICITNE INTEGRACIJE NAPONA
ZA GURSONOV MODEL U SLUČAJU DEFORMACIJE LJUSKI

SA VELIKIM M DILATACIJAMA
Miloš Kojić, Ivo Vlastelica, Miroslav Živković

U radu se izlaze implicitni postupak integracije napona za Gursonov materijalni model - model
plastičnosti metala sa zapreminskom plastičnom deformacijom - i za slučaj velikih deformacija
ljuske. Računanje napona se zasniva na metodi osnovnog parametra (GPM), sa priraštajem
srednje plastične deformacije ∆eP

m uzetim za osnovni parametar. Uslov za napon u ljusci (normalni
napon u pravcu debljine ljuske jednak nuli) je zadovoljen na kraju vremenskog koraka (koraka
opterećenja) i problem je sveden na rešavanje nelinearne jednačine po ∆eP

m. Postupak je robustan i
računski efikasan. Konverzija rešenja za ljusku na 3-D uslove omogućava primenu 3-D
konsistentne tangentne elastično-plastične matrice.

Postupak rešavanja za male deformacije je proširen na velike deformacije ljuske. Koriste se
multiplikativna dekompozicija gradijenta deformacije i logaritamske deformacije. Ovo proširenje
se zasniva na jednostavnoj primeni 3-D kinematičkih relacija na uslove ljuske.

Rešeni numerički primeri ilustruju tačnost i efektivnost predlozenog postupka.

Ključne reči: Gursonov model, implicitna integracija napona, metod osnovnog parametra,
velike deformacije ljuske, multiplikativna dekompozicija gradijenta deformacije,
logaritamske deformacije.


