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Abstract. A strict mathematical description of appearance of a deterministic chaos in 
the set of orbits of the critical circle map  n+1 = 

 

n + – (1/2 ) sin(2 n) | mod 1,  
is considered. All relevant terms such as coupled oscillators, self-similar winding 
numbers, mode-locking, Farey sequences, Arnold tongues are thoroughly discussed. 
The locked-ratios of Fibonacci numbers that lie on the zigzag path on the Farey-tree 
approaching the golden mean 

 

= ( 5 – 1)/2, or its unitary complement, which is the 
stem of the expression “golden route to chaos”. This pattern occurs in many dynamical 
systems such as negative resistance circuits, biochemical and chemical oscillators, 
thermofluid convections, lasers, cortical neural oscillators and so on. 

INTRODUCTION: COUPLED OSCILLATORS 

Oscillators are everywhere around us. Many of them are connected by exchange of 
energy, in other words they are coupled. The Figure 1 shows some examples. Usually, 
one oscillator is active as a source of power (driving one), and the another is passive 
(driven one). The second half of XX century was recognized as a period of increasing 
interest for strange behavior of such “simple” physical systems. 

The fact that oscillators as systems being thoroughly described by a set of well 
known equations still exhibit unpredictable dynamics was attractive enough to involve 
many extraordinary specialists from different fields of science: physics, mathematics, 
astronomy, chemistry, biology etc. One of the most astonishing phenomenon connected 
with oscillators is chaos – the state in which a dynamical system behaves unpredictable, 
following very complex patterns. It was early discovered that nonlinearity was 
responsible for chaotic motion regimes. Among the first mathematically correct 
explanations were those by Duffing (nonlinear spring driven oscillator and the 
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corresponding famous equation [5]), Van der Pol (self-excited oscillator based on the 
electronic tube circuit [5]) and others. The underlying topology of coupled oscillators’ 
dynamics was studied by Arnold, Zaslavskii, Hopf and others.  

 

Figure 1. Coupled oscillators: a. Pendula; b. Hydrodynamics; c. Electronic; d. Neurals.  

The driving force A cos t may cause subharmonic oscillations of the form B 
cos( t/n + ) playing an important role in  pre-chaotic states of the system and its 
transition to chaos. The superposition of the two subharmonics gives,  

1 1 2 2( ) cos ? cos ? ,x t b t b t

 

                                            (1) 

where 1 is the driving–force frequency and 2 is the resonance frequency. If the ratio 
= 1 2 is rational number, one speaks about periodic regime. If is irrational, the 

oscillator is in quasi–periodic (or aperiodic) regime. The surface that “carries” the 
trajectory in the phase space is torus T = T(b1, b2) = C(b1) C(b2), the Descartes product 
of two circles with radii b1 and b2 (Figure 2, left).  Therefore, the Zaslavskii map 
(generalized torus to torus map [5]) is a very important tool in studying coupled 
oscillators’ dynamics. In the case of periodic regime ( Q), the trajectory of the point 
x(t) (orbit) makes a winding line on T  known as Hopf fibration [4] (fig. 2, right). If 

 

Q, orbits densely cover the entire torus surface.

  

Figure 2. Torus 
1 2 2 1 1 2 2 1 2 2{ ( cos ) cos , ( cos )sin , sin }T x b b y b b z b

 

and Hopf fibration on its surface for = 21/34 with the Poincaré plane.  

From the point of view of complex and chaotic motion, it is sometimes enough to 
consider the Poincaré sections of T (see [1]), the cross section, with the Poincaré plane, 
i.e. the plane orthogonal to the first dimension of the torus (Figure 2, right).   
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MODE-LOCKING AND CIRCLE MAPS 

One of the most interesting occurrences connected with quasiperiodicity of coupled 
oscillators is mode-locking (also: phase-locking, frequency-locking, synchronization). 
This was observed as early as in 17. Century by Duch physicist Christian Huygens. He 
noticed that two pendulum clocks, mechanically attached to a common structure become 
synchronized as the system evolves in time. Recently, many mode-locking models were 
found in diverse fields: solid-state physics, biological systems, chemistry, fluid 
mechanics etc.  

If the frequencies 

 

and 

 

in (1) are commensurable, the Poincaré section of T 
consists of a finite number of discrete points, arranged in the vertices of a regular polygon 
inscribed in the circle C(b2). This is a periodic case, and 

 

rational. In the 
case of irrationality of 

 

the?Poincaré section is the sequence of points covering the 
whole circle C(b2). This is the consequence of irregular structure of the sequence , 
n N0}, which is given by the iteration 

     
1 ( ), where ( ) sin 2 .

2n n

K                           (2) 

Here, 

 

the frequency ratio and K is a positive real constant called coupling 
strength parameter that controls nonlinearity. The mapping 

 

in (2) is known as the 
standard circle map. If it takes “mod 1” then 

  

?clearly maps [0,1] into itself and 
therefore it maps circle to circle.  In terms of equation (2), the mode-locking means that 
so called winding number (also rotational number) 

 

limn )/n “locks” into 
rational ratios, with the curious tendency of having small denominators. 

The mode locking can be observed even on the sky since planets are important 
coupled (non-dissipative) oscillators. For ex. the Moon’s spinning frequency relates to its 
revolution around Earth as 1:1. The same ratio for the planet Mercury is 2:3. It goes back 
to Gauss, who 1812 discovered that the orbit of the asteroid Pallas was locked to the 
orbital period of Jupiter in the precise ratio 7:18 ([6]). The planets are driven by 
gravitation, but neurons of the human brain also oscillate pairwise. In fact, they are 
electrically coupled oscillators [2]. Namely, hippocampal pyramidal and granule cells 
show small depolarization caused by attenuated dendritic action potentials. This causes 
electric coupling of two neurons (axonal coupling) which seems to be the mechanism for 
ultra-fast neuronal communication. 

FAREY TREE 

One of the most important mathematical theorems says that the set Q of rational 
numbers is countable. This means that the elements from Q may be “ordered”, i.e. put in 
the for of the sequence r = {r1, r2, r3, …, rn, … }. There are infinitely many ways to 
construct the sequence r. One, connected with coupled oscillators, is known as Farey 
tree. It is the set Q arranged as a two-dimensional array (Figure 3).  

Kappraff and Adamson [3] gave an effective algorithm for constructing the Farey 
tree. Here, this algorithm is formally encoded and an inverse algorithm is given as well.  
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Algorithm 1.

 
(Direct algorithm nn r

 
(N 

 
Q)). Let n N,  n = (b0b1...bm)2  

 
(b0b1...bmbm)2 

 
{

 
where j = card{ b b ..., b j }, b + b b

 
b Then, 

1
1

1
1

1

0

nr

             (3) 

which usually shortens to  rn  = 1/ , or to rn = [0; 

 

The Algorithm 1 gives r1=1/2, r2=2/3, r3=1/3, r4=3/4, r5=3/5, r6=2/5, r7=1/4, r8=4/5, 
r9=5/7, r10=5/8, r11=4/7, r12=3/7, r13=3/8, r14=2/7, r15=1/5, r16=5/6, r17=7/9 etc. This 
sequence forms the Farey tree shown on Figure 3. Beginning with 1/2 and counting right 
to left, we can count all the rationals from [0, 1]. 

Two rationals p/q and r/s from Farey tree are called adjacents, if  |ps - qr| = 1. A 
Farey sum (or mediant) of two adjacents is (p/q)  (r/s) = (p+r)/(q+s). Note that adjacent 
rationals from Farey tree always lie in adjacent levels and are south-east/north-west or 
south-west/north-east neighbors. Their mediant is the one-level-up element that is 
situated “between” them. For ex., 1/3 and 2/5 are adjacents and (1/3) 

 

(2/5)=3/8. Also, 
12/17=(5/7) 

 

(7/10). The following inverse algorithm gives the position of a given 
rational number (from [0, 1]) in the hierarchy of Farey tree. 

Algorithm 2.

 

(Inverse algorithm /r p q n

 

(Q 

 

N)). Let r Q  with continued 

fraction representation  r = [0; Then, in binary representation, n = 
(1…1)(0…0)(1…1) … (1…1) where blocks of “ones” and “zeroes” contain 

and elements, respectively. 
Application of this algorithm reveals that 6/7 is 32-nd member of the Farey tree 

hierarchy, while 1/7 is 63-rd. In fact, these two rationals are boundary elements of the 
fifth level of the Farey tree (see Fig. 3). 

Inside the Farey tree, there is the special subsequence with indices 1, 2, 5, 10, 21, 42, 
85, 170, 341, 682, 1365, 2730, … This is the sequence of Fibonacci numbers ratios 
Fi+1/Fi+2, for i 

 

N, 
1 2 3 5 8 13 21 34 55 89 144 233

, , , , , , , , , , , ,
2 3 5 8 13 21 34 55 89 144 233 377

     

(4) 

which is marked on Figure 3 and linked by the bold line. Let us recall that the Fibonacci 
sequence is given by F0 = 0, F1 = 1, Fi+1 = Fi + Fi-1,  i 

 

N. The leftmost and rightmost 
quotients in the basis of the tree are 0/1 = F0/F1 and 1/1 = F1/F2. 

There is another algorithm ([6]) that allows calculating two immediate successors of 
an element rn of Farey tree, and these are r2n and r2n+1. For ex. the immediate successors 
of r9 = 5/7 are r18 = 8/11 and r19 = 7/10. The algorithm is based on a well known identity 
of continuous fractions  [0; a1,…,ak] = [0; a1,…,ak 1,1]. 

Algorithm 3.

 

(Immediate successors) Let rn, n 1, be any element of the Farey tree 
with the continued fraction expansion  rn =[0; ;   Then,   

r2n = [0;   r2n+1 = [0; for even  n
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r2n+1 = [0;  r2n = [0;  for odd  n

   

Figure 3. Farey tree.   

The above example, r9 = 5/7 gives the following continued fraction expansion 5/7 = 
[0; 1, 2, 2] = [0; 1, 2, 1, 1]. The last digits should be increased by one, so the first fraction 
yields [0; 1, 2, 3] = 7/10  and, by Algorithm 3 it is r19, while the equivalent fraction gives 
[0; 1, 2, 1, 2] = 8/11 which is r18. The 51252–nd  element of the Farey tree is the fraction 
327/769. The Algorithm 3 gives [0; 2, 2, 1, 5, 2, 1, 1, 3] as its continued fraction, so that 
[0;2, 2, 1, 5, 2, 1, 1, 4] = 418/983 (the 102504-th element) and  [0; 2, 2, 1, 5, 2, 1, 1, 2, 2] = 
563/1324 (the 102505-th element). 

DEVIL’S STAIRCASE AND ARNOLD TONGUES 

If the parameter K in (2) vanishes, two oscillators are uncoupled – no energy 
exchange exists. In this case, the winding number = limn ( n 0)/n equals If the 
coupling strength increases, 0<K<1, the oscillations may be periodic even though is 
irrational. This is known as the mode-locking regime. In fact, the periodic or mode-locked 
motions persist for the whole finite-width interval of This means that the graph 

will have small plateaux. The “oldest” rational in Farey hierarchy, 1/2 corresponds 
to the widest plateau (Figure 4, left). Two symmetric, narrower plateaux correspond to 
the next two, 1/3 and 2/3, and so on. 

The mediant gives the local hierarchy of the widths of the plateaux, determining 
the plateau with the greatest width between two plateaux characterized by adjacent 
rationals. The resulting graph is known as devil’s staircase and has fractal structure, as 
close-ups in Figure 4 show. This graph is a line with constant segment at every rational. 
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Therefore, between two adjacent plateaux of periodicity p/q and r/s, there is smaller 
mediant plateau (p+r)/(q+s). Unlike the “classic” devil’s staircase generated by the 
Cantor set that exhibit self-similar structure, this ones are asymptotically self similar. 
However, the precise scaling law is known only in the vicinity of the famous Golden 
mean = ( 5 

 

1)/2 = 0.61803… The shape of  devil’s staircase depends on K.  For K = 
0 it becomes the straight line (all plateaux has zero width). By increasing K, the plateau 
widths increase as well. When K exceeds 1 (critically strong coupling), the plateaux 
overlap and the system starts behave chaotically.  

  

Figure 4. Devil’s staircase for the circle map (K = 0.8) and close-ups.  

  

Figure 5. Arnold tongues for the critical circle map (K=1).  

Increasing of plateaux is represented by the K versus 

 

diagram that has the form of 
“tongues” (shaded area in Figure 5) known as Arnold tongues. This diagram shows the 
geometry of quasiperiodic scenario for transition to chaos. Since two parameters change, 
(K and ) we say that bifurcation sequence has codimension 2. Note that each Arnold 
tongue corresponds to one rational number. Between two adjacent rational tongues there 
is a narrower one corresponding to the Farey sum of the previous two. 
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If the system reaches critically strong coupling K 

 
1–  , the chaotic regime become 

possible. Then, the circle map (2) is called critical and the coupled system “jumps” from 
one stable mode-locking regime to the next one in the hierarchy with the biggest possible 
denominator, i.e. to the mediant one. Since the “optimal” resonance is 1:1, it is the 
beginning of the route that may lead to chaos. The next mode-locking possibility is 1/2 
which is the closest possibility and the first term in Farey tree. Next is mediant of the 1/1 
and 1/2 which is 2/3. Then, mode-locking frequencies go to 3/5, 5/8, 8/13, etc, just 
following the sequence (4) and the bold zigzag line in Figure 3.  In other words, the 
system follows the sequence of Fibonacci  ratios Fi/Fi+1 (i 

 

N). Since limi

 

(Fi/Fi+1) = 

 

( 5 

 

1)/2  i.e. the Golden mean, this route  is called golden route to chaos. Of 
course, by some circumstances, the system may start at the ratio 0/1 (the leftmost in Fig. 
3). Then the route includes the following mode-locking states: 1/2, 1/3, 2/5, 3/8, 5/13, 
8/21, 13/24 …, which is the sequence {Fi/Fi+2, i 

 

N}. This time, limit is 2 which 
is

But, there are also other paths along the Farey tree. If a coupled system starts gliding 
to chaos, we say that the quasiperoidic route to chaos is on. The tendency of the 
frequency ratio 

  

is to take rational values with as small denominators as possible. In 
this way, if it starts with a fraction which continued form is 1= [0; a1,…, ak] it continues 
to the ratio [0; a1,…, ak, 1] = 2 , which is the one of immediate successors of  1, then 
goes to the successor of 2 which is 3 = [0; a1,…, ak, 1, 1], then to 4 = [0; a1,…, ak, 1, 
1, 1] etc. It is easy to see (by Algorithm 3, for ex.) that the sequence { i} forms a zigzag 
path of fractions with small denominators. The route is as fast as the denominators are 
smaller. Therefore, the fastest route is this one starting in the first vertex of the Farey tree, 
[0; 2]= [0; 1, 1], and following the sequence [0; 1, 1], [0; 1, 1, 1], [0; 1, 1, 1, 1], [0; 1, 1, 
1, 1, 1], … which is the Fibonacci ratios sequence {Fi/Fi+1, i N}. Thus, the “golden 
route” to chaos is the fastest one among all others. The opposite, slowest route goes along 
the harmonic sequence 1/2, 1/3, 1/4, 1/5, … 1/n , … which is represented by the 
rightmost branch of the Farey tree.   

Note: The authors want to mention that Figures 2 

 

5 and algorithms are created by 
their own software being developed in MATHEMATICA 4.1 environment.  
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ZLATNI PUT U HAOS  

Ljubiša M. Kocic i Liljana R. Stefanovska  

U radu se razmatra pojava deterministickog haosa na skupu orbita kriticnog 
kružnog preslikavanja n+1 = n + 

 
(1/2 )sin(2 n) | mod 1,  i daje se njegova 

stroga matematicka interpretacija. Detaljno se obraduju svi pridruženi fenomeni, 
kao sto su spregnuti oscilatori, samo-slicni zavojni brojevi, zakljucavanja faze, 
Fareyevi nizovi i Arnoldovi jezici.  Fibonaccievi brojni odnosi zakljucavanja koji 
leže na cik-cak putanji Fareyevog drveta, i koji konvergiraju ka odnosu zlatnog 
preseka 

 
= ( 5 

 
1)/2 ili ka njegovom jedinicnom komplementu, objašnjavaju 

naziv “zlatni put u haos”. Ovakva šema prelaska u haos je karakteristicna za 
mnoge dinamicke sisteme, kao na primer za elektricna kola sa negativnom 
otpornošcu, za biohemijske i hemijske oscilatore, za provodjenje toplote fluidima, 
za lasere, za kortikalne neuro-oscilatore itd.        
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