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Abstract. In this paper, we give a survey of our own software for differential geometry and its
extensions [4, 3, 2, 5]. Furthermore we deal with a few applications to represent some
interesting classical results in mathematics and physics. Originally it was the aim of the
software to support teaching by visualising the results from differential geometry. But it also
has applications in research and in physics and the engineering sciences. The software is open,
that is, its source files are available to its users. Hence it can be extended. It uses OOP, and its
programming language is PASCAL.
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1. INTRODUCTION

Visualisation and animation are of vital importance for the modern meth-
ods in mathematics and physics. They strongly support the understanding
of mathematical concepts that are needed in the engineering sciences. Of
course, this applies most of all to geometry and differential geometry.

We think that the application of a commercial graphics software pack-
age is neither a satisfactory approach for the illustration of the theoretical
concepts, nor can it be used as their substitute.The academic mathematical
education should not be confined to teaching students the use of some soft-
ware package by instructing them which keys to press, and how to move the
mouse, regardless of how convenient this may seem. The emphasis should
be put on teaching the fundamental theoretical facts.

Students should also be encouraged to write their own programmes for
the visualisation of the solution of problems. A successful completion of this
task will not only give prove of the students’ correct understanding of the
matter, but ‘will also add to their motivation. Moreover the students will
considerably improve their command of a programming language and their
techniques.
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In view of this, we developed an open software in PASCAL on programme
level which provides the basic tools for computer graphics, in order to offer
an alternative to existing graphics software packages.

The main purpose of our software originally was to visualise the classical
results in differential geometry on PC screens, plotters, printers or any other
postscript device, but it also has extensions to physics, chemistry, crystal-
lography and the engineering sciences. To the best of our knowledge, no
other comparable, comprehensive software of this kind is available.

The software is open which means that its source files are accessible to
the users, thus enabling them to apply it in the solutions of their own prob-
lems. This makes it extendable and flexible, and applicable to both teaching
and research in many fields. In contrast to this, almost all other available
graphics packages are closed; in general, the area below the user interface is
inaccessible and consequently the software cannot be extended beyond the
scope of solutions it offers.

The software uses OOP, object oriented programming, and its program-
ming language is PASCAL. The software is self-contained in the sense that
no graphics package is needed other than PASCAL.

The advantages of PASCAL are the hierarchy of objects and the poly-
morphy which is not available in some OOP languages. In the hierarchy of
objects, a successor inherits all the data, in particular the methods and pro-
cedures, of its predecessors. Polymorphy means that virtual methods can be
declared, a virtual method can be rewritten with the same name in a suc-
cessor, and one may have more methods than one with the same name. The
development of our software could not have been achieved without QOP.

FIGURE 1. Two spheres and two cones, and two tori and
their lines of intersection

2. WULFF’S CRYSTALS AND POTENTIAL SURFACES

Here we deal with the graphical representation of crystals and their po-
tential surfaces.
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According to Wulff’s principle [6], the shape of a crystal is uniquely de-
termined by its surface energy function. A surface energy function is a real
valued function depending on a direction in space.
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FIGURE 2. Potential surfaces and corresponding Wulff’s crystals

Let &B" denote the unit sphere in IR**! and F : 8B™ = IR be a surface
energy function then

PM = {Z=F()ée R :&c dB"}

is an n—dimensional manifold which represents F'.
If n = 1, then € = é(u) = {cosu,sinu} for u € (0,27) and we obtain a
potential curve with a parametric representation

PC = {# = f(u)(cosu,sinu) : u € (0,2m)} where f(u) = F(&(u)).

If n = 2, then & = &(ul,u?) = {cosul cosu?, cosu! sinu?, sinu'} for (u!,u?)
€ R=(-n/2,7/2) x (0,27) and we obtain a potential surface with a para-
metric representation

PS = {% = f(u',u?)(cosu! cosu?, cos u® sinu?,sinu') : (u!,u?) € R}
where f(u',u?) = F(&(u!,u?)).

The intersection of a potential surface and a sphere with radius r and centre
in the origin is a curve which represents the constant values r of the function
F; it is a so—called equipotential line.

Wulff gave a geometric principle of construction for crystals [6].

Theorem 1 (Wulff’s principle). For every € € 8B", let Ez denote the
hyperplane orthogonal to € and through the point P with position vector
P = F(e)e, and Hy be the half space which contains the origin O and has the
boundary Ez = OHz. Then the crystal Cp which has F as its surface energy
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function is uniquely determined and given by
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FIGURE 4. Potential surfaces
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FIGURE 3. A potential curve and a potential surface
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FIGURE 5. A potential surface and its intersection with a
sphere and equipotential lines on a potential surface

Since Wulff’s construction in Theorem 1 is far from applicable for the
graphical representation of crsytals, we give two results which are more
useful.

Theorem 2. ([1, Satz 6.1]) Let F : 8B™ — IR™ be a continuous function.
Then a point X is on the boundary OCr of Wulff’s crytstal Cr corresponding
to F if and only if

F(@)>Zeéforalléc OB™ and F(&) =% e¢& for some & € OB™.

Theorem 3. ([1, Satz 6.2]) Let F : 8B™ — IR' be a continuous function
and CF : 0B™ = IR" be defined by

CF(&) = inf {F(@)(¢'e @) l:%cOB™ and Eo it > 0}.
Then a parametric representation for the boundary OCr of Wulff’s crystal
corresponding to F is

#(ul,u?) = CF(&ul,u?))é(ul,u?) for (ul,u?) € (-7/2,7/2) x (0,2r).

Although we have used both Theorems 2 and 3 to develop algorithms and
programmes for the graphic representation of Wulfl’s crystals, in some cases
a parametric representation can explicitly be given for the boundary of a
Wulfl’s crystal, that is for the function CF.

One such case is when the function F is equal to a norm in three-
dimensional space. If F = || - ||, then the boundary of Wulff’s crystal cor-
resonding to F is a sphere with respect to the dual norm of || - ||. Here we
represent the potential surfaces and corresponding Wulff’s crystals for the
£; and £, norms || - ||; and || - || given by

|Z|lx = |#1] + 22| + |z3] and [[F|eo = max, lzx| for Z = {z1,z2, 73}
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F(&,)8, = (X-8,)8,

oB"

FIGURE 7. Wulfl’s crystals constructed by Theorems 2 and 3

The two pictures are dual to one another.

3. COORDINATE SYSTEMS AND ORTHOGONAL SYSTEMS

The choice of a suitable coordinate system is important in the solution of
many problems.

Let S = {(z1,...,2n) : 2k € R (k =1,...,n)} C IR™. Then new coordi-
nates #1,...,&, are introduced for S by means of a function g : R" — IR"
if

(1) the set § = D(g), the domain of g, is open and g : § — § is one-to—

one and onto;

(2) g € CY(S) and its Jacobian satisfies

det 39.(3) # 0 for all 5 € 5.

T
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F1GURE 8. Wulff’s crystals corresponding to the #; and £o, norms

Example 4. Some coordinates for the right half plane.

Let S = R*\ {(y,2) € R* : y <0}, S={(r,0) e R? : r > 0,0 € (—m, )},

where we write r = §j and 8 = %, and the map g : S — S be defined by
9((r,6)) = (r(1 + cos ), rsinb) (cf. Figure 9).

The restriction of the familiar polar coordinates p and © given by f :

8" = {(p,0) € R’ : p > 0,0 € (-7/2,7/2)} = S with f((p,0)) =

(pcosTheta, psin ©) defines coordinates for S. Obviously the function h :

S — 8 defined by h(r,0)) = (2rcos8/2,6/2) = (p,®) is one-to-one and

onto with non-vanishing Jacobian. Thus g = foh: 8 — S is one-to—one

and onto with non-vanishing Jacobian.

..
[P SRR,
<y

FIGURE 9. Construction of the coordinates of Example 1 and
their coordinate lines



50 E. MALKOWSKY

Example 5. Toroidal Coordinates for IR3.
Let .
S ={(r¢0) € R :re(0,00),¢E€ (0,2m),
RS (_7(.1 7!')} ’
S =R\ {(z,y,2) : >0,y =0}
and the map g = (91,92,93) : S = S with (r, ¢,0) — (z,y, 2) be defined by
z=g1(r, ¢,0)=r cos ¢(1 + cos §),

y=go(r, ,0)=r cos ¢(1 + cos§),
2=g3(r, ¢, 0)=rsinb.

zA

P=(x,y,z)

FI1GURE 10. Toroidal coordinates

If p,p and © denote the familiar spherical coordinates defined on S' =
(07 OO) X (07 277) X (—7!'/2, 7"/2) by
z = pcosypcos®, y=psinpcosO and z = psinO,
then the following transformation formulae hold

p=2rcos%, p=¢, ©=0/2

r=ﬁgs—6 and 6 =20.

The transformations from Cartesian coordinates z, y and z to toroidal co-
ordinates are given by
= z? + 9 + 22

T o/aZiy?
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/2 (z=0,y>0)
3n/2 (z =0,y >0)
¢={ arctan¥ (z,y >0)
arctan + 7 (2 <0)
a,rcta.n§+27r (z>0,y<0)
and
z

6 = 2 arctan

Va2 +y2

If #, § and Z are coordinates for a subset S of IR® defined by a map
g : S = 8, then the choice of one coordinate to be constant yields a so-
called coordinate surface.

Example 6. Coordinate surfaces of the toroidal coordinates.

The choices r = const, ¢ = const and 8 = const yield a torus, a half
plane and half a cone, respectively, as coordinate surfaces of the toroidal
coordinates.

FIGURE 11. Some (¢, ) coordinate surfaces and coordinate
surfaces of toroidal coordinates
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Triple systems of surfaces can be used to represent the coordinate surfaces
of a cordinate system. They also play an important role in differential
geometry to find the lines of curvature on certain surfaces.

Let S C IR? be a domain, §(u!,u?,u?) be of class C2(D) and

Jioyr =0 for i # k.

Then the surfaces given by u/ = const determine three families of orthogona.l
surfaces, a so—called triple orthogonal system.

By Dupin’s theorem, the surfaces of a triple orthogonal system mutually
intersect in the lines of curvature.

Example 7. The triple orthognal system of ellipsoids and hyperboloids of

one and two sheets.

Let a,b,c € IR be given such that 0 < a? < b® < 2. For each A € Dy =

R\ {a?,b?,c?}, a surface is given by the equation

(1) (ml)z 4 (:1:2)2 4 (x3)2
a?=x b -X -2

If A < a® then we obtain an ellipsoid. If a2 < A < b? then we obtain a

hyperoloid of one sheet. If b> < X < ¢? then we obtain a hyperboloid of two

sheets. It can be shown that this is a triple orthogonal system. It is used to

determine the lines of curvature on its surfaces.

-1=0.

FIGURE 12. The triple orthogonal system of ellipsoids and hyperboloids

Animations for the topics of the paper are available.
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VIZUALIZACIJA 1 ANIMACIJA U MATEMATICI I FIZICI
Eberhard Malkowsky

U ovom radu dajemo kratak pregled svog sopstvenog softvera za diferencijalnu geometriju i
njegovih prosiranja [4,3,2,5]. Nadalje obadjujemo nekoliko primena da bi predstavili neke
interesantne klasicne rezultate iz matematike i fizike. Pocetni cilj softvera bio je podrska
predavanjima pomocu vizualizacije rezultata iz Diferencijalne geometrije. Ali on takodje ima
primene u istrazivanjima, a takodje i u fizici i inZenjerskim naukama. Softver je otvoren, Sto znaci
da su njegovi izvorni fajlovi dostupni korisnicima. Zbog toga se moze prosirivati. Koristi OOP, a
radjen je u pogramskom jeziku Pascal.



