Vol.4, No 16, 2004 pp. 1-10
UDC 517.9(045)
Invited Paper
THE CONNECTION BETWEEN SET AND FUZZY DIFFERENTIAL
EQUATIONS
V. Lakshmikantham
Dept. of Mathematical Sciences, Florida Institute of Technology, Melbourne,
FL. 32901, USA
Abstract. The study of fuzzy differential equations (FDEs) forms
a suitable setting for mathematical modeling of real world problems in
which uncertainties or vagueness pervades. In recent years, the theory
of FDEs has been investigated extensively in the original formulation as
well as in an alternative framework, which leads to ordinary multivalued
differential inclusions. It has recently been realized that initiating
the study of set differential equations in a metric space has several advantages,
in addition to providing a natural setting for considering FDEs. In this
talk, we present some interesting results in this direction with the necessary
background material.
Key words: Set differential equations, fuzzy differential equations
VEZA IZMEDJU SKUPA I FAZI DIFERENCIJALNIH
JEDNAČINA
Proučavanje fazi diferencijalnih jednačina (FDE) formira odgovarajuće okruženje
praktičnih problema koji su prožeti neizvesnošću i nejasnoćama. Proteklih
godina, teorija FDE je opširno proučavana u originalnoj formulaciji kao
i u alternativnom okviru, što vodi ka običnom ubrajanju diferencijalnih
višestrukih vrednosti. Nedavno se došlo do zaključka da uvodjenje proučavanja
skupa diferencijalnih jednačina u metričkom prostoru ima nekoliko prednosti
uz stvaranje prirodnog okruženja za proučavanje FDE. U ovom radu se predstavljaju
zanimljivi rezultati u ovom pravcu uz neophodan materijal.
Ključne reči: skup diferencijalnih jednačina, fazi diferencijalne
jednačine.