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Abstract. The problem of 2-D compressible gas flow through a channel with one
permeable wall, which makes the part of the contour of a porous body, is treated in the
paper as the problem of strong interaction between the channel flow and the flow
through the porous body. Simplified equations governing both flows are solved by using
matching conditions on the permeable wall, whereby the need for using empirically
defined slip boundary conditions by Beavers and Joseph is eliminated. Slip velocity is
found to increase down the channel attaining its maximum value, equal to the value for
an incompressible fluid, at the exit cross section of the channel. Exact expressions for
the friction coefficient and the relative increase of the mass flow rate due to the slip are
derived, and better agreement with the existing experiments is shown to take place than
by using the concept of slip boundary conditions.

1. INTRODUCTION

It is well known in the classical Fluid Mechanics that viscous fluid adheres to the
boundaries of the fluid flow, thus equating its velocity with the velocity of these
boundaries. Since the form of the space occupied by the fluid, stationary or not, is usually
prescribed in advance, fluid velocity at the boundaries is also a known quantity which
serves as a boundary condition (no-slip boundary condition) in the solution of Navier-
Stokes, or some other, approximate equations describing the fluid flow. There are,
however, some specific problems of Fluid Mechanics, technically important enough, in
which some slip of the fluid over the fluid boundaries may occur. Typical examples of
this kind represent (a) rarified gas flow in which the free molecular path is not negligibly
small with respect to a reference length scale, and (b) liquid and gas flow over a porous
surface which constitutes the integral part of a contour of a porous body, through which
the fluid flow takes place also. In both of these two cases slip velocity must be somehow
modeled, most frequently in an empirical way, in order to get the boundary conditions,
necessary for the solution of fluid flow equations.
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Interestingly enough, slip velocity in both of these two cases, although they are
physically quite different, is modeled in such a way that it is proportional to the velocity
gradient at the contour. Since in this paper we will be considering the fluid flow over a
permeable wall, we will state the result of modeling the slip velocity for this flow as
conjectured by Beavers & Joseph [1]:
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where uo is the slip velocity over the contour along which x axis is directed, p is the
pressure, u is the velocity component in the direction of x, y is the coordinate in the
direction perpendicular to the wall, k is the permeability of the porous material, µ is the
viscosity of the fluid, and α is the so-called slip coefficient to be determined
experimentally. Experiments conducted with different liquids [1] and with air [2] have
verified the conjecture (1) and have enabled the determination of the slip coefficient for
various porous materials. It is shown that slip coefficient primarily depends on the
structure of the material, rather than on its porosity and the kind of fluid.

A new attempt for the solution of fluid flow over porous walls was performed in [3].
Both the fluid flow above the wall and the fluid flow inside the porous body were treated
separately, with the slip velocity as an arbitrary quantity, not known beforehand. Formal
solutions obtained in this way are then matched by equating the shear stresses on the
contour of the body emanating from both flows. In this way the slip velocity can be
obtained without any previous assumptions and both solutions can be completed. The
attempt was tested on the example of an incompressible 2-D flow through a channel with
one wall contiguous to a porous block, whereby the flow through both the channel and
the block was exposed to the same pressure difference – the problem which was
experimentally explored in [1] and [2]. The results obtained show that the thickness of
the block plays a very important role in this problem – the effect that, naturally, could not
be encountered by the empirical model (1). It turns out that this model is justifiable for a
block of infinite thickness only. For a block of finite thickness the concept of Beavers and
Joseph is incorrect in that the slip coefficient cannot be defined. Comparison of the
obtained results with the experimental data shows excellent qualitative agreement, while
the quantitative compa-rison of both results enables a very reliable determination of the
effective viscosity for various porous materials.

This paper represents a relatively simple extension of the results obtained in [3] to the
compressible flow. Compressible flows in channels with one porous wall find very useful
applications in so-called aerostatic slider bearings and in self-acting slider bearings.
Method for calculating fluid flow over porous surfaces, developed in here and in [3],
points out to the possibility of applying it for the solution of problems of fluid flow
around bodies coated with thin blocks of porous material, aimed at the flow control in the
boundary layer which is formed around the body for high Reynolds numbers in this case.

2. PROBLEM STATEMENT AND GOVERNING EQUATIONS

We consider the problem depicted in Fig. 1. ho is the height of the channel and lo is its
length, while the corresponding dimensions of the porous block are h and lo.
Compressible fluid flows through both the channel and the block from left to right,
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whereby the pressure in the inlet cross section is pi and in the exit cross section is pe.
Momentum equation by means of which we describe both flows, supposedly isothermal,
can be concisely written as [4]:
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where, in addition to denotations already used
before, V

"
 is the velocity vector of a 2-D flow

in Cartesian coordinates, ρ is the fluid
density, s is the porosity, µ~  is effective
viscosity, and B is a binary coefficient, which
may attain the values 0 or 1. For the channel
flow (free fluid!) B=0. Then, we have
automatically s=1 and µ=µ~ , so that the
above equation reduces to the well known
Navier-Stokes equation. For B=1 momentum
equation for the flow in a porous medium is
obtained. In this equation the terms
immediately on the left and on the right from
the equality sign are due to the well known
Darcy model. If the viscous terms on the right
are added we get the Darcy-Brinkman model

of flow, while all the terms in the equation, with the inertia (first term) included make the
so-called Darcy-Brinkman-Lapwood model of flow through porous media. For a
compressible flow, which is considered in here, the continuity equation of the form

0)( =⋅∇ Vp
"

, the same for both flows, should be joined to the momentum one. For the
analysis to follow it is convenient to right down the forgoing equations in nondimensional
form by using the following characteristic scales, equal for both flows, for various
independent and dependent variables: ho for all lengths, eu - average velocity at the exit of
the channel, for all velocities, and pe and ρe- the pressure and the density at the exit of the
channel, respectively, for the pressure and the density. If we for simplicity keep the same
notations for dimensional as well as for the corresponding nondimensional quantities, the
above equations will attain the following form:
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In there Re /e e ou h= ρ µ# #  is the Reynolds number defined by means of the effective

viscosity, Me = e e eu pγ ρ  is the Mach number, oh kσ = #  where k k= µ µ# #  is the
effective permeability of the porous block, and γ  is the ratio of specific heats. In order to
simplify these equations we will now suppose that 0 oh l$ , and we will introduce a small
parameter ε = ho / lo. Then, it is natural to expect that in both the channel and the block
the variations of all physical quantities in the direction of x will be considerably slower,
than in the direction of y, and also that the transverse velocity component will be much
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Fig. 1. Channel flow with one porous wall
from the inlet cross section (i) to
the outlet cross section (e)
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smaller than the longitudinal one. In order to make these assumptions mathematically
explicit we will introduce a slow coordinate ξ = εx and a small transverse velocity:

),( yVv ξε= , so that ).1(OV =  Also, taking care about the conditions under which the
experiments in [1] and [2] are conducted, we will suppose the following order of
magnitude of the governing parameters present in (2):

Re (1), M ( ), (1), (1)eO O O s O= = ε σ = =# .

Then, the equations will take the form:
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where 2
o e e ol u p hλ = µ# #  is an O(1) parameter, which plays an important role in the solution

of this problem. It is to be noted that it is linearly proportional to the mass flow rate
through the channel, and that when the flow through the channel is considered separately
(B = 0) it becomes: 2

o e e ol u p hλ = µ . First order equations that follow from (3) obviously
have the form:

2 1
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These equations are to be solved separately for the flow in the channel and for the
flow in the block, respecting the following boundary conditions:

− for the channel: ( ), ( )o ou U V V= ξ = ξ  for 0,y =  and 0,u V= =  for 1,y =
where )(ξoU  is an arbitrary and so far an unknown slip velocity on the porous wall of the
channel, and )(ξoV  is a possible transverse velocity component, which would be
responsible for the mass transfer between the channel and the block, and:

− for the block: the same as for the channel for 0y =  , and 0,u V= =  for ,y H= −
where oH h h= . To these boundary conditions an equality of normal and shear stresses on
the porous wall of the channel should be joined. This leads to the equality of the pressure in
the channel and in the block in all cross sections, and to: , , 1.( ) ( )y y o B o y y o Bu u= = = =µ = µ#  The
problem posed in such a way is relatively easily solvable by simple analitical methods.

3. SOLUTION OF THE PROBLEM AND DISCUSSION

As said already, for the flow in the channel: 0B =  and λ=λ~ . The solution of the
momentum equation in (4), by using the corresponding boundary conditions, is obtained as:
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while the integration in y of the continuity equation from 0 to 1 gives:
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The necessary expression for the shear stress on the porous wall is:

( )
2

w
o

e

pU
p

′τ = −λ +
ε λ

 (7)

The corresponding expressions for the flow in the block are obtained in exactly the
same way (the integration of the continuity equation in this case is performed between -
H and 0 ), and read:
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By equating the shear stresses we now get the relation:
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If we multiply it by p and differentiate it, and then combine it with an equation which
is obtained by elimination of Vo(ξ) from the previous equations, we will obtain a system
of homogeneous equations for (pp')' and (pUo)'. This system posseses the mathematically
trivial solutions only: (pp')' = 0, and (pUo)' = 0. These solutions lead to: Vo(ξ) = 0, which
means that to this order of approximation there is no mass transfer between the channel
and the block.

Integration of the equation for the pressure with the employment of the boundary
conditions: p(0) = P = pi / pe > 1 and 1)1( =p  gives the following pressure distribution in
both the channel and the block: p2 = P2 − (P2 − 1)ξ. Then it follows from (11):
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Since there is no mass transfer between the channel and the block, the mass flow rate
in the channel is constant, so that an additional condition must be satisfied: 

1

0
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Its application leads to:
λ=′−λ 126 pppU o , (13)

which in the combination with the previously derived expression for Uo finally provides
the desired expression for the slip velocity: pUo = Uo

(o)
 where:
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is exactly the slip velocity in the case of flow of an incompressible fluid, as shown in [3].
Thus, the nondimensional slip velocity for a compressible flow is not an "absolute"
constant as in incompressible flow case, but it increases along the channel inversely
proportionally to the pressure, attaining its maximum value at the exit cross section. This
value corresponds to the slip velocity of an incompressible fluid. For σ→∞, i.e. for an
absolutely inpermeable block, it is naturally obtained: Uo

(o)
 → 0, while for a fully

permeable block: σ→0, we get Uo
(o)

 → 2, i.e. in this case the maximum slip velocity is
twice as much as the average velocity at the exit cross section of the channel.
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Fig. 2. Dependence of the maximum slip velocity ( )o
oU  on the parameters oσ

and µ µ#  for a porous block of infinite thickness.
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Fig. 3. Dependence of the maximum slip velocity ( )o
oU  on the parameters oσ

and 5µ µ =#  on the porous block of finite thickness.

In Fig. 2 we show how the maximum slip velocity (14) depends on 1/ 2( )oσ = σ µ µ#

for H →∞ and for different ratios of the effective viscosity and the fluid viscosity, which
is according to its definition always greater than one. It is noticed that all curves pass
through the point: 2=σo , Uo

(o)
 = 3/2. We will show a little later that shear stress on the
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permeable wall in this point is zero, and that a purely Darcy flow takes place in the block.
In Fig. 3 we show the dependence of the maximum slip velocity on σo for a finite height
H and for an arbitrarily chosen value of the parameter 5µ µ =# . It is noticed that the
effect of the height of the block is pronounced for relatively small values of σo only, i.e.
in channels of extremely small heights – so called microchannels and/or for blocks made
of extremely permeable materials.

If the value of λ in the classical case in which there is no-slip on the walls of the
channel, i.e. for Uo

(o)
 = 0 is denoted by λo, we get from (13): λo = (P2 − 1)/24. From here

we may obtain in a simple manner the classical and the well known relation between the
pressure drop and the mass flow rate through the channel [5]. This relation incorporates
also the classical formula for the friction coefficients fo = 24/Re, where Re = ρeueho/µ is
the Reynolds number defined via fluid viscosity. If the definition of λo is now inserted in
(13), a formula for the relative increase of the mass flow rate through the channel, caused
by the slip on the porous wall, can be easily derived. This increase was the primary
subject of measurements conducted in (1) and (2). Expressed by Uo

(o) this increase reads:
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where oM%  and M%  are the corresponding mass flow rates. Also, from the same relation
one can get the correction of the friction coefficient due to the slip:

)2/1( )(o
oo Uff −= (16)

Relying on their model (1), Beavers and Joseph [1] also derived a formula for the
relative increase of the mass flow rate. If a comparison of their formula with our formula
(15) is made, one may conclude that both formulas coincide for H→∞ only, and reduce to
each other if 1/ 2( )α = µ µ# . For a block of finite height their forms do not coincide, so that
one cannot recognize the value of the slip coefficient α by comparing both expressions,
which means that in this case their model is not applicable.

We have made a further comparison of our result (16) with the measurements in
[2]. The measurements were conducted by using the porous materials with the comercial
names Foam metal A (5 series of measurements) and Foam metal B (3 series of
measurements). By using the expression (16) we managed to get the following average
values of the ratio of the effective viscosity and the fluid viscosity: for Foam metal A -

662.4/~ =µµ , and for Foam metal B - 022.5/~ =µµ . In both cases maximum deviation of
the experimental results from the average values was 0.2%, which convincingly speaks in
favor of the theory presented here. Obviously, the theoretical results obtained in here can
be very successfully and relyably utilized for the experimental determination of the
effective viscosity for various porous media. In contrast to the incompressible flow case
[3] in which the corresponding solution was an exact solution of the governing equations,
the solution obtained here is an approximate, first order solution. Thus, it makes sense to
find some more, higher order approximations in order to get more exact results. This is,
however, beyond the scope of this work.
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4. CONCLUSIONS

The following conclusions can now be made, based on the analysis performed in
the paper.

a) Compressible flow in a channel with one permeable wall can be successfully
treated as the problem of strong interaction between the fluid and the porous
medium, i.e. by simultaneous solution of the equations describing the fluid flow in
the channel and the fluid flow in the porous block, exactly as in the
incompressible flow case [3]. At that the slip velocity is considered as a quantity
which is not known in advance and which can be determined by matching the
shear stresses on the porous boundary. This way, the need for using the
empirically defined boundary condition by Beavers & Joseph is eliminated.

b) The Beavers and Joseph condition is shown to be correct for the blocks of infinite
height only. For the blocks of finite height the condition is erroneous and the idea
of the slip coefficient has no meaning.

c) It is our strong opinion that the method applied in this paper can be utilized for the
solution of some other problems in techniques, as for example for the solution of
boundary layer flow over porous surfaces, whereby the porous surface would be
used to control the flow.
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STRUJANJE STIŠLJIVOG GASA
KROZ KANAL SA POROZNIM ZIDOM

Vladan Djordjević

Ravansko strujanje stišljivog gasa kroz kanal sa jednim poroznim zidom, koji čini deo konture
nekog poroznog tela, tretira se u radu kao problem jake interakcije izmedju strujanja u kanalu i
strujanja kroz porozno telo. Pojednostavljene jednačine kojima se opisuju oba strujanja rešene su
korišćenjem uslova spajanja na poroznom zidu, pri čemu se eliminiše potreba za korišćenjem
uslova klizanja fluida koji su empirijski definisali Beavers i Joseph. Pronadjeno je da brzina
klizanja raste u pravcu strujanja i da dostiže svoju maksimalnu vrednost u izlaznom preseku
kanala. Ta vrednost je jednaka onoj koja se ima kod strujanja nestišljivog fluida. U radu su
izvedene tačne vrednosti  koeficijenta trenja i relativnog povećanja masenog protoka kroz kanal,
izazvanog proklizavanjem fluida duž poroznog zida. Dobijeni rezultati bolje se slažu sa postojećim
eksperimentima, nego u slučaju korišćenja graničnog uslova klizanja.


