Vol.3, No 14, 2003 pp. 865-879
UDC 531+532+534+517.93
Invited Paper
NONLINEAR PHENOMENA IN DYNAMICS OF CAR
MODEL
Katica (Stevanović) Hedrih, Julijana Simonović
Faculty of Mechanical Engineering University of Niš
Mathematical Institute SANU Belgrade
Yu-18 000- Niš, ul. Vojvode Tankosi?a 3/22,
Telefax: 381 18 41 663, Mobile 063 8 75 75 99
e-mail: katica@masfak.ni.ac.yu * khedrih@eunet.yu * sjupe@ptt.yu
Abstract. In this paper research results of influences, of masses
debalances of car system and of rough spot (prominence) in the way on which
the car is in move, at nonlinear dynamics properties of car are presented.
Also, the properties of nonlinear dynamics of car model are investigated
by using the corresponding equations of phase trajectories of corresponding
basic scleronomic nonlinear model to the rheonomic car dynamics model.
Particularly we were analyzed homoclinic orbits and their transformation
shaped by number eight, there appear and disappear are caused by changing
some parameters of system. By using Math-Cad program for drawing families
of phase portraits visualization of nonlinear phenomena in dynamic of car
model are presented, also on that graphics it is barely noticeable a influence
of masses debalances parameters like as of rough spot (prominence) in the
way at nonlinear dynamics features of car.
It is observe one system of tree degree of mobilities and with one
degree of freedom and we narrow our problem on research of following
nonlinear differential equation:
like as homogenous equation appropriate to this equation:
From characteristics visualizations we can noticeable the phenomena
of trigger of coupled singularities and homoclinic orbits shaped by number
eight like as double number eight. Analyzing the properties of basic nonlinear
system we comes to conclusion that with modification of parameters of system
appears a separation of one homoclinic orbits in more, like as that becomes
to bifurcation of relative rest position in rheonomic system, apropos in
equivalent scleronomic system which correspond to him.
Key words: Car model, rough spot (prominence) in the way,
nonlinear dynamics, phase portrait, trigger of coupled singularities, homoclinic
orbit,
layering of homoclinic orbit.
NELINEARNI FENOMENI U DINAMICI MODELA
VOZILA
U radu su predstavljeni rezultati proučenih uticaja debalansa masa vozila
i neravnine puta po kojoj se posmatrano vozilo kreće na osobenosti njegove
nelinearne dinamike. Izvedene su jednačine faznih trajektorija relativne
dinamike i proučena svojstva i struktura faznih portreta nelinearne dinamike
baznpg scleronomnog modela koji odgovara reonomnom modelu takvog modela
vozila. Posebno su analizirani oblici homokliničkih orbita i transformacija
homokliničkih orbita oblika broja osam, čije postojanje i nepostojanje
je vezano za odredjenu promenu parametara sistema. Pomoću MathCad programa
sastavljene su familije faznih portreta baznog sistema, i faznih trajektorija
izučavanog sistema, tako da je pomocu njih data vizuelizacija nelinearnih
fenomena u dinamici modela vozila i slikovito je prikazan uticaj parametara
debalansa rotacionih masa, kao i neravnine puta na svojstva nelinearne
dinamike modela vozila.
Posmatran je sistem sa tri stepeni pokretljivosti i jednim stepenom
slobode kretanja i zadatak se sveo na izučavanje sledeće nelinearne diferencijalne
jednačine
kao i njoj odgovorajuće homogene oblika:
Sa karakterističnih vizualizacija dinamike baznog sistema uočava se
pojava trigera spregnutih singulariteta i homokliničkih orbita u obliku
broja osam, kao i udvojenih brojeva osam. Analizom svojstava osnovnog nelinearnog
sistema dolazi se do zaključka da se sa promenom parametara sistema javlja
raslojavanje jedne homokliničke orbite u više, kao i da dolazi do bifurkacije
položaja relativnog mirovanja u reonomnom sistemu, odnosno položaja ravnoteže
u ekvivalentnom skleronomnom sistemu koji mu odgovara. U tome se objašnjava
pojava sličnih haotičnim i stohastičnim kao odziv na sasvim periodične
pobude.