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Abstract. In this paper, we suggest another approach to incorporate impulsive nature
into fuzzy differential equations so that one can control the behavior of solutions
suitably without replacing fuzzy differential equations by other formulations. We
develop the comparison theorems for fuzzy impulsive hybrid systems to establish
Lyaponov stability results in terms of two measures differential equations.
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INTRODUCTION

It is now well known that impulsive differential equations, form a natural description
of observed evolution phenomena of several real world problems. As a result, the
theory of impulsive differential equations has attracted the attention and its theory
is more richer than the theory of differential equations without impulses [1].

The theory of fuzzy differential equations has attracted much attention in recent
times [6]. The approach is based on the fuzzification of the differential operator, and
therefore suffers from the disadvantage, since the solution u(¢) of the corresponding
fuzzy differential equation has the property that the diam[u(t)]* is nondecreasing as
time increases. Consequently this original formulation of fuzzy differential equations
does not reflect the rich behavior of solution of corresponding ordinary differential
equations without fuzziness. Some alternative formulations of fuzzy initial value
problems are now suggested by replacing them by a system of multivalued differential
equation as well as by set differential equations [6].

In this paper, we suggest another approach to incorporate impulsive nature into
fuzzy differential equations so that one can control the behavior of solutions suit-
ably without replacing fuzzy differential equations by other formulations. Impulsive
perturbations can act as controllers and thereby remove the disadvantage created by
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the fuzzification of the differential operator mentioned earlier. Utilizing the existing
results in impulsive and fuzzy differential equations, we initiate the study of impul-
sive fuzzy differential equations and then consider impulsive hybrid fuzzy differential
systems.

1. PRELIMINARIES

Let Py(R") denote the family of all nonempty compact, convex subsets of R". If
a,B € R and A, B € P(R"), then

a(A+B)=aA+aB, offA)=(0BA 14=A

and if o, 3 > 0, then (o + B)A = aA+ BA. Let I = [ty,%p +a],fo > 0 and ¢ > 0 and
denote by E” = [u: R™ — [0,1] such that u satisfies (i) to (iv) mentioned below]:

(i) » is normal, that is, there exists an zo € R™ such that u{z) = 1;
(ii) w is fuzzy convex, that is, for 1,y € R" and 0 < A < 1, ,
w(Az + (1 — Ny) > minfu(z), u(y)];

(iil) u is upper semicontinuous;
(iv) [u]° = cl[z € R™ : u(z) > 0] is compact.

For 0 < @ < 1 we denote [u]* = [z € R : u(z) > a]. Then from (i) to (iv), it
follows that the a-level sets [u]* € P(R") for 0< o < 1.
Let diy(A, B) be the Hausdorff distance between the sets A, B € Py(R"). Then
we define
dlu,v] = sup dg[[u]*, [v]], (1.1)
0<a<i

which defines a metric in E® and (E™,d) is a complete metric space. We list the
following proprieties of d[u, v]:

dlu+w, v+ w] = d[u,v] and du,v] = dv, ], (1.2)
d[Xu, Av] = |A|d[u, ],
dfu,v] < dfu, w] + d[w, v], (1.4)

for all u,v,w € E™ and A € R.

For z,y € E™ if there exists a z € E™ such that x = y + 2, then z is called H-
difference of z and y and is denoted by z —y. A mapping F': I — E™ is differentiable
at ¢t € I if there exists a F'(t) € E™ such that the limits

lim F(t+h)—F(t) and  lim F(t) — F(t—h)
h—0+ h h—0+ h

exist and are equal to F'(t). Here the limits are taken in the metric space (E™, d).
For details on fuzzy differential equations and the calculus described above, see

[6].
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2. HYBRID FUZZY DIFFERENTIAL EQUATIONS

The problem of stabilizing a continuous plant governed by differential equation through
the interaction with a discrete time controller has recently been investigated. This
study leads to the consideration of hybrid systems [3, 7]. In this section, we shall
extend this approach to fuzzy differential equations.

Consider the hybrid fuzzy differential system

©(E) = ftul®), \e(2)), ulte) = 2, 2.1)

on [tg,tx+1) for any fixed z € E* k=0,1,2,..., where f € C[R; X E* x E*, E*], and
M € C[E™, E"|. Here we assume that 0 < #y < t; < t3 < ... are such that ¢; — oo as
k — oo and the existence and uniqueness of solutions of the hybrid system hold on
each [tg, tg41]- To be specific, the system would look like

([ up(t) = F(t,uo(t), Xo(uo)),  uolto) =uo, o<t <t

ui(t) = ft,us(t), M(w1)), wlh)=wu, t<t<ty,

u;c(t) = f(t, uk(t), )\k(uk), uk(tk) = Uy, t <t<itp+1,

\
By the solution of (2.1), we therefore mean the following function
[ uo(t), to<t<t,

u1(2), 1 <t <y,

u(t) = u(t, to, uo) = <
up(t), e <t <tpqa,

\

We note that the solutions of (2.1) are piecewise differentiable in each interval for
t € [tk te+1) for any fixed uy € E” and k= 0,1,2,....
Let V € C[E™, R,]. For t € (t, txs1),u, 2 € E™, we define

WVW@=MMW%WW+W@%M@»—WW-

h—0+
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We can then prove the following comparison theorem in terms of Lyapunov-like
function V.

Theorem 2.1 Asume that
(i) V € C[E", R,],V (u) satisfies |V (u) — V(v)| < Ld[u,v], L > 0 for u,v € E™;
(ii) D¥V(u,z) < g(t,V(u),o6(V(2)),t € (tx,te+1], where g € C[R3, R}, oy €

C[R+, R+], u,z € En,k = 0, 1,2, very

(iti) the mazimal solution v(t) = 7(t,to, wo) of the hybrid scalar differential equation.

w' = g(t, w(t), ox(wi)), t € (t, tir] } (2.2)

w(tk) = Wy, k=0,1,2,‘..,

exists on [to, 00).
Then any solution w(t) = u(t,to,uo) of (2-1) such that V{ug) < wo satisfies the
estimate
' V() <r(t), t=to.

Proof: Let u(t) be any solution of (2.1) existing on ([tg, oo) and set m(t) = V{u(t)).
Then using (7) and (4), and proceeding as in the proof of Theorem 4.2.1 in [6], we
get the differential inequality

D¥m(t) < g(t,m(t), ox(my)) for tp <t < tria,

where my; = V{(u(ty)). For t € [to,t1], since m(tg) = V(up) £ wp, we obtain by
Theorem 4.2.1. in [1, 4]

V{ug(t)) < rolt, to, wo), to <t <,
where r(t) = ro(t, to, wo) is the maximal solution of
wy = g(¢, wo, oo(wo)), wo(to) =wo >0, to <t < ty,
and ug(t) is the solution of
up = f(t,uo(t), Ao(uo)), ulto) =uo >0, to<t<t.
Similarly, for ¢ € [t;,ts), it follows that
V(u(t)) Smitt,w), 1 <t<
where w; = rg(t1, to, wo), 71 (¢, t1, w;) is the maximal solution of
wy = g(t, wi(t, o0 (w)), wity) =w 20, t;, <t <t
and wu;(t) is the solution of

uf = f(tua(t), A{wr)), wi(th) =wy, t1 <t <t



Impulsive Hybryd Fuzzy Differential Equations 855

Proceeding similarly, we can obtain
V(ue(t)) < ri(t, e, we), te <t <ty

where uy(t) is the solution of

u(t) = ft,up(t), Me(ug)), welte) = up, e <t < tpga,
and ri(t, x, wy) is the maximal solution of

wi = gt we(t), ox(wr)), welte) = we, t <t < tea,
where wg = 751k, te-1, Tk—2(tk-1, tk—2, Wk—1)). Thus defining r(¢, to, wo)as the max-
imal solution of the comparison hybrid system (3.2) as
[ 7o(t, to, wo), to <t <ty
r(t, t, w1), B <t <ty

r(t, to,wo) = |
 for ) re(t b, we), te <t < tep,

and taking wo = V(ug), we obtain the desired estimate
V(u(®)) <r(t), t=to.

The proof is therefore complete.

3. IMPULSIVE HYBRID FUZZY DIFFERENTIAL SYSTEM

Consider now the hybrid impulsive fuzzy differential system given by

w' = f(t,u, A(tr; ux)), t € [te, trsl,
u(ty) = u(te) + L(ulty)), t=t, (3.1)
u(td) = uo, '
where f € C{Ry x E* x E*,E", I : E® —» E™, A, € C[Ry,xE™, E"], and k =
0,1,2,... . We assume that Io(ug) = 0, and the existence of solution of the system

o = f(t,u, Mte, 2)), tE [te, trra],
u(ty) = z+Ii(2), t#t, (3.2)
u(td) = uo
on [tg,tx+1] for any fixed 2 € E® and all k = 0,1,2,... . Note that the solution of
(3.2) are piecewise continuous function with points of discontinuity of the first type

at t = ¢ at which they are assumed to be left continuous.
Let V: Ry x E® — R%}. Then V is said to belong to class V4, if
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(i) V is continuous in (t,#;1] X E™ and for each uw € B, k= 1,2, ....

Hm, ) 0y V(8 0) = V(5 u) exists;

(ii) V is locally Lipschitzian in u. Then we define, as before,

D*V(t,u,z) = limsup %[V(t + h,u+ hf(t,u, A(te, 2)) — V(E,u)].
h—0+

We need the following comparison result.

Theorem 3.1 Assume that

(i) V € C[R* x E™ R,],V(t,u) is locally Lipschitzian in u that is
[V(t,u) — V{t,v)| < Ld[u,v], L > 0, and D*V(t,u,z) < g(t, V(t,u), or(ty, 2)),
t € (tk,trs1), u,z € E", where o, € C[R2, R], g € C[R%,R};

(i) There exist a i € C[R,, Ry], Yu(w) is nondecreasing in w and

V(t7u + Ik(u)) < wk(v(t3 ’LL)), k= 1’ 2, U € En;

(1) the mazimal solution r(t) = r(t,to, wo) of the scalar hybrid impulsive differential
equation

w = g(t?w’ U(th wk))a te [tka tk+1]a
w(ty) = P(w(ty)), t = ty, (3.3)
w(to) = wo > 0,

existing on [tp, 00]. Then any solution u(t) = u(t, tg, uo) of (3.1) satisfies

V(t, u(t) S T(t, to, wo), t Z t(),
provided wy = V (o, uo).
The proof of this comparison Theorem follows on similar lines as in Theorem 3.1
defining u(t) and r(t), piece by piece suitably. We omit the proof to avoid monotony.
Having the foregoing comparison result at our disposal, we can formulate stability
criteria of the solutions of (?7) in terms of two different measures.
We need the following definition before we proceed further.

Definition 3.1 Let K = [a € C[Ry, Ry]: alw) is strictly increasing in w and a(0) =
0andT =[h € [R, x E*, R,]: inf h(t,u) =0 fort = Ry, and u € E].

Definition 3.2 Let hg,h € I'. Then we say that hy is uniformly finer than h if there
erists a p > 0 and a function ¢ € K such that

ho(t, u) < pimplies h(t,u) < ¢(ho(t, u)).

Definition 3.3 The hybrid setvalued differential equation (3.1) is said to be
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(i) (ho, h)-equistable if, for each ¢ > 0,ty € Ry, there exists a positive function
& = 6(p, €) that is continuous in ty for each € such that

ho(to,uo) < 6 implies At u(t)) <e, t>tg,
where u(t) is any solution of equation (3.1).

Based on the this definition, other stability notions can be formulated in terms of
two measures. A few choices of (hg, &) will demonstrate the generality of the definition
of 3.3. Furthermore, the stability notions in terms of (hg, h)unify a variety of stability
concepts found in the literature. It is easy to see that the Definition 3.3 reduces to

(1) the well known stability of the trivial solution of (3.1)if h(t,u) = ho(t,u) =
d{u,8), u € E™;

(2) the stability of an invariant set 0 € E™ if h{t,u) = ho(t,u) = dy[u,Q] =
[infd[u,v] : v € §;

(3) the stability of asymptotically invariant set 8, if h(t,u) = ho(t,u) = d{u,8) +
a(t), where a(t) > 0 is a decreasing function such that o(t) — 0 as t — oo;

(4) the stability of conditionally invariant set £2; with respect to {2, where Q3 C
Ql Cc E", if h(t, u) = do[u, QI], h,()(t, U) = d()[’U,, QQ];

(5) the stability of the prescribed motion up(t) of (3.1) if h(t,u) = ho(t,u) =
dfu, uo(t)];

(6) the partial stability if A(Z, u1) = d{us, 8], ho(t, u = d(u, 8), where u, is a compact
convex subset of u € £,

(7) the orbital stability if h(t,u) = ho(t, u) = d[u, B((to, u0)), where B((to, uo)) —
ug([ta, 00), to, , tg) is a closet set in E™ and wo(t, g, up) is a prescribed solution
of (3.1).

For various definitions and stability results in terms of two measures see [1, 2].
Definition 3.4 Let V : R, x E™ — R, belong to class Vy. Then V is said to be
(i) h—positive definite if there exists a p > 0 and a function b € K such that

b(h(t,u) < V(t,u)
whenever h(t,u) < p,t € R,,u € E";
(i) ho decrescent if there exists a p > 0 and a function a € K such that
V(t,u) < a(ho(t, u))

whenever ho(t,u) < p, (t,u) € Ry x E™

We are in a position to prove stability results of (3.1)in terms of two measures.
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Theorem 3.2 Assume that

(1) V € Vo, V is h—positive definite and hy decrescent;
(i) Conditions (i) and (ii)of Theorem 3.1 hold;
(#1) ho is finer than h.

Then the stability properties of the trivial solution w = 0 of (3.8)imply the
corresponding (ho, h)— stability properties of (3.1)respectively. '

Proof:We shall only give the proof of (hg, k)— stability.
Since V is h— positive definite, there exist a A > 0 and b € K such that

b(h(t,u)) < v(t,u), if ht,u) <A (3.4)
Let 0 < € < X and ¢y € Ty. Suppose that the trivial solution w = 0 of 3.3)is stable.
Then given b(e) > 0 and ¢y € R, there exists a §; = 81 (¢, €) > Osatisfying
O<wyg<dy = w(tt,wo)<ble), t=1g (3.5)
where w(t, tg, wg) is any solution of 3.3. Choose wy = V(tg, up). Since V(t,u) is
ho— decrescent and hg is finer than A, there exists a Ay > 0 and a a € Ksuch that for
ho(to, uo) < Ao,
h(to,uo) <A and V(to,up) < a(ho(to, uo)). (3.6)
It then follows from (3.4) that if hg(to, ug < Ag, then

b(h(to,’llo) S V(tu,’lLo) S a(ho(to,uO). (37)

Choose a § = §(tp, €) such that § € (0, Ao], a(d < &; and let ho(to, ug) < 6. Then
(3.7)shows that h{tp, ug) < € since §; < b(€). we claim that

h(to,us) < € wheneverhgy(to, uo) < 6, (3.8)

where u(t) is any solution of (3.1).

1.
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IMPULSIVNE HIBRIDNE FAZI-DIFERENCIJALNE JEDNACINE
A. S. Vatsala

U ovom radu se predlaze drugi pristup uvodjenja inpulsivne prirode u fazi diferencijalne
jednacine tako da one mogu upravijati ponasSanjem reSenja prigodno bez prevodjenja fazi-
diferencijalnih jednacina u druge formulacije. Mi razvijamo teoreme uporedjenja za fazi

impulsivne hibridne sisteme radi postavljanja rezultata Lyapunovljeve stabilnosti u formi dve mere
diferencijalnih jednacina.

Kljuéne reci i reenice (fraze): Fazi hibridni sistemi, Impulsivne differencijalne jednacine.



