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Abstract. Recently, Prof. M. C. Chaki introduced the notion of a quasi Einstein
manifold [1], denoted by (QE)n , whose Ricci tensor S of type (0,2) is not identically
zero and satisfies the condition :

S(X,Y) = a g(X,Y) + b A(X)A(Y)
where a, b are scalars of which b≠0 and A is a non-zero 1-form such that

g(X,U) = A(X)
for all vector fields X, U being a unit vector field.
If the existence of a 4-dimensional Lorentz manifold is established whose Ricci tensor is
of the form given above, then it is found that such a space-time represents a perfect
fluid space-time in cosmology.
Investigations by Karcher [2] and others have revealed that a conformally flat perfect
fluid space-time has the geometric structure of quasi-constant curvature. It is found
that a manifold of quasi-constant curvature is a natural sub-class of quasi Einstein
manifold. Investigations on quasi Einstein manifolds help us to have a deeper
understanding of the global character of the universe [3] including the topology.
Consequently, we can study the nature of the singularities defined from a differential
geometric standpoint.
 In a subsequent paper [4], Prof. Chaki introduced the generalized quasi Einstein
manifolds denoted by G(QE)n. Chen and Yano [5] had introduced the notion of a
manifold of quasi-constant curvature denoted by (QC)n. a generalization of a manifold
of quasi-constant curvature, called a manifold of generalized quasi-constant curvature,
denoted by G(QC)n, has been done by Prof. Chaki [4]. This is necessary for the study of
G(QE)n. It is found that every G(QC)n (n ≥ 3) is a G(QE)n, while every G(QC)n (n>3) is
a conformally flat G(QE)n. The importance of a G(QE)n lies in the fact that such a 4-
dimensional semi-Riemannian manifold is relevant to the study of a general relativistic
fluid space-time admitting heat flux [6]. The global properties of such a space-time is
under investigation. Study of space-times admitting fluid viscosity and electromagnetic
fields require further generalization of the Ricci tensor and is under process.
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INTRODUCTION

Recently, Prof. M. C. Chaki along with R. K. Maity [1], introduced the notion of a
quasi Einstein manifold denoted by (QE)n , whose Ricci tensor S of type (0,2) is not
identically zero and satisfies the condition:

S(X,Y) = a g(X,Y) + b A(X)A(Y)

where a, b are scalars of which b ≠ 0 and A is a non-zero 1-form such that

g(X,U) = A(X)

for all vector fields X, U being a unit vector field. The eigen values corresponding to the
Ricci tensor S were obtained and the eigen vectors corresponding to the eigen values
were identified. A necessary and suffient condition was obtained in order that the relation
R(X,Y).S = 0 might hold. The authors also considered two sufficient conditions in order
that a (QE)n (n>3) might be conformally conservative.

Investigations in a subsequent paper [2] revealed that a conformally flat (QE)n has the
geometric structure of quasi-constant curvature. It was found that a manifold of quasi-
constant curvature is a natural sub-class of quasi Einstein manifold. It was further shown
that if the generator of a conformally flat (QE)n (n>3) is an irrotational vector field, then
the (QE)n is a product manifold of quasi constant curvature. Some results relating to
sectional curvatures of this kind of product manifold were also obtained. Investigations
on (QE)n help us to have a deeper understanding of the global character of (QE)n [3]
including the topology.

In a subsequent paper [4], Prof. Chaki introduced the generalized quasi Einstein
manifolds denoted by G(QE)n. Chen and Yano [5] had introduced the notion of a
manifold of quasi-constant curvature denoted by (QC)n. A generalization of a manifold of
quasi-constant curvature, called a manifold of generalized quasi-constant curvature,
denoted by G(QC)n, has been done by Prof. Chaki [4]. This was necessary for the study
of G(QE)n. It was found that every G(QC)n (n≥3) is a G(QE)n , while every G(QC)n (n>3)
is a conformally flat G(QE)n.

The study of (QE)n and G(QE)n becomes meaningful due to its application in the
general theory of relativity and cosmology.

It is found that a perfect fluid space-time of general relativity is a four-dimensional
semi-Riemannian quasi Einstein manifold whose associated scalars are [(r/2) + p] and
(ρ + p) respectively where ρ and p are the energy density and the isotropic pressure of the
fluid and r is the scalar curvature, the generator of the manifold being the unit timelike
velocity vector field of the fluid.

The importance of a G(QE)n lies in the fact that such a 4-dimensional semi-
Riemannian manifold is relevant to the study of a general relativistic fluid space-time
admitting heat flux [6]. The global properties of such a space-time is under investigation.

1. QUASI EINSTEIN MANIFOLDS

The notion of a quasi Einstein manifold was introduced and studied by M. C. Chaki
and R. K. Maity [1] in 2000. A non-flat Riemannian manifold (Mn,g)(n>2) was defined to



 On Quasi Einstein and Generalized Quasi Einstein Manifolds  823

be a quasi Einstein manifold if its Ricci tensor S of type (0,2) is not identically zero and
satisfies the condition

)(,.....,);()(),(),( MYXYAXbAYXagYXS χ∈+= (I.1)

where a, b are scalars of which b≠0 and A is a non-zero 1-form such that

,)(),( XXAUXg ∀= (I.2)

X being a vector field and U being a unit vector field.
In such a case, a and b were called the associated scalars, A was called the associated

1-form and U was called the generator of the manifold. An n-dimensional manifold of
this kind was denoted by the symbol (QE)n. It is obvious that if b = 0, then this (QE)n
reduces to the well-known Einstein manifold if a = r/n. This justifies the name 'Quasi
Einstein' given to this type of manifold. The above paper deals with (QE)n(n>3) which
are not conformally flat. The following results were obtained in this paper:

In a (QE)n(n>3), the Ricci tensor S has only two distinct eigen values (a+b) and a of
which the former is simple and the latter is of multiplicity n – 1, the generator U being an
eigen vector corresponding to the eigen value (a+b).

In a (QE)n, the relation R(X,Y).S = 0 does not in general hold. A necessary and
sufficient condition was obtained in order that this relation might hold.

A Riemannian manifold (Mn,g) is said to be conformally conservative [7] if the
divergence of its conformal curvature tensor is zero. Thus every conformally flat
Riemannian manifold is conformally conservative, but the converse is not, in general,
true. Since this paper dealt with (QE)n(n>3) which are not conformally flat, the authors
considered two sufficient conditions in order that a (QE)n(n>3) might be conformally
conservative.

IA. Preliminaries:

Since U is a unit vector field, we have

.1),()( == UUgUA  (I.A.1)

Contracting (I.1) over X and Y gave the result

bnar += (I.A.2)

where r denotes the scalar curvature of the manifold. Substitution of Y=U in (I.1) leads to
the relation

).,()()()(),( UXgbaXAbaUXS +=+= (I.A.3)

If L denotes the symmetric endomorphism of the tangent space at each point
corresponding to the Ricci tensor S, then

.,),(),( YXYXSYLXg ∀= (I.A.4)

If R be the curvature tensor of (QE)n, then R(X,Y) may be regarded as a derivation of
the tensor algebra at each point of the tangent space. Hence

).),((),()](),([ ZYXRLLZYXRZLYXR −= (I.A.5)
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The transformations R(X,Y) and L are called the curvature transformation and the
Ricci transformation respectively. It is found that if ,0),( =LYXR  then R(X,Y) and L
commute, that is

).,(),( YXRLLYXR = (I.A.6)

IB. Significance of the associated scalars in a (QE)n(n>3):

From (I.A.3) it is evident that (a+b) is an eigen value of the Ricci tensor S and U is an
eigen vector corresponding to this eigen value. If V be any other vector orthogonal to U,
then g(U,V)=0 i.e. A(V)=0. From (I.1) it follows that a is an eigen value of the Ricci
tensor and V is an eigen vector corresponding to this eigen value. For this n-dimensional
manifold, V is any vector orthogonal to U. Hence it follows from a known result in linear
algebra [8], that the eigen value a is of multiplicity n-1 and the multiplicity of the eigen
value (a+b) must be unity.

This leads to the theorem:

Theorem I.1: In a (QE)n(n>3), the Ricci tensor S has only two distinct eigen values
(a+b) and 'a' of which the former is simple and the latter is of multiplicity n-1.

Note: If (a+b)=0 then a≠0 because b≠0.

IC. (QE)n(n>3) satisfying the relation R(X,Y)·S=0 :

It is known that

)]()),((),),(([
)]()),((),),(([

]),(,[],),([),](),([

ZAWYXRbAZWYXRag
WAZYXRbAWZYXRag

WYXRZSWZYXRSWZSYXR

+−
+−=

−−=⋅
 by (I.1) (I.C.1)

 )].()),,(()()),,(([ ZAWYXRAWAZYXRAb +−=

Since b≠0, it follows from (I.C.1) that in a (QE)n(n>3) the relation 0),( =⋅ SYXR  does
not hold in general. However, if 0)),,(( =ZYXRA  then .,0),](),([ WZWZSYXR ∀=⋅  In that
case, .0),( =⋅ SYXR  It is now supposed that .0),( =⋅ SYXR  Then (I.C.1) yields

.0)()),,(()()),,(( =+ ZAWYXRAWAZYXRA (I.C.2)

Substitution of W = U gives in view of (I.A.1), .0)()),,,(()),,(( =+ ZAUUYXRgZYXRA
Since ,0)),,,(( =UUYXRg  it follows that

.0)),,(( =ZYXRA (I.C.3)
This leads to the theorem:

Theorem I.2: In a (QE)n(n>3), the relation R(X,Y)⋅⋅⋅⋅S = 0 holds if and only if
A(R(X,Y,Z)) = 0

If 0),( =⋅ SYXR , then .0)),,,(()),,,(( =+ ZWYXRSWZYXRS
Simplification with the help of (I.A.4) yields the relation

.0])},,,(),,([{ =− WLZYXRZYXLRg (I.C.4)
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Hence
.0),,(),,( =− LZYXRZYXLR (I.C.5)

Substitution of this in (I.A.5) leads to

.0)](),([ ZZLYXR ∀= (I.C.6)
Hence

.0),( =LYXR (I.C.7)

In that case .0),( =⋅ SYXR  In virtue of (I.C.7) it follows that the curvature and the
Ricci transformations commute [ by (I.A.6)].

The converse is also true, that is, if the curvature and the Ricci transformations commute,
then (I.C.7) holds and therefore .0),( =⋅ SYXR  This leads to the following theorem:

Theorem I.3: In a (QE)n(n>3), the curvature and the Ricci transformations
commute if and only if the relation A(R(X,Y,Z)) = 0 holds.

ID. (QE)n(n>3) with divergence-free conformal curvature tensor:

The conformal curvature tensor C of a Riemannian manifold (Mn,g) is said to be
conservative [7] if the divergence of C is zero i.e. .0=divC  In such a case the manifold
is said to be conformally conservative. In this section, the authors have obtained two
sufficient conditions for a (QE)n(n>3) to be conformally conservative.

It is assumed that

 
)],()(),()([

)1(2
1),)((),)((

),,(

XYgZdrZYgXdr
n

XYSZYS

ZYXH

ZX −
−

−∇−∇=
(I.D.1)

where r is the scalar curvature of (QE)n. Then it is known [9] that .0=divC  if and only if
.0),,( =ZYXH  Two types of (QE)n(n>3) has been considered in the following sequence:

Type I: The associated scalars a and b are constants and therefore r is constant.
Type II: a and b are not constants but a+b = 0.
Type I: For this type 0)( =Xda  and .0)( =Xdb  Therefore .0)( =Xdr  Use of (I.1)

leads to

)].()()()())([(
)]())(()())([()()()(),()(

),)((

YAZAAZAYAb
YAZAZAYAbZAYAXdbZYgXda

ZYS

XX

XX

X

∇+∇=
∇+∇++=

∇

Hence

)].())(()())(()())(()())([(
),)((),)((

YAXAXAYAYAZAZAYAb
XYSZYS

ZZXX

ZX

∇−∇−∇+∇=
∇−∇

(I.D.2)

Therefore, (I.D.1) takes the following form

)]())(()())(()())(()())([(
),,(

YAXAXAYAYAZAZAYAb
ZYXH

ZZXx ∇−∇−∇+∇=
(I.D.3)
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since .0)( =Xdr
Imposition of the condition that the generator U of the manifold is a recurrent vector

field [10] with the associated 1-form A not being the 1-form of recurrence, gives
UXBUX )(=∇ , where B is the 1-form of recurrence. Hence ),)((),( YUXBgYUg X =∇ ,

that is
).()())(( YAXBYAX =∇ (I.D.4)

In virtue of (I.D.4), (I.D.3) is expressed as follows

)].()()()()()()()()()()()([
),,(

YAXAZBXAYAZBYAZAXBZAYAXBb
ZYXH

−−+=
(I.D.5)

Since ,0))(( =∇ UAX  it follows from (I.D.4) that .0)( =XB  Therefore, .0),,( =ZYXH
Consequently we have the theorem:

Theorem I.4: If in a (QE)n(n>3) the associated scalars are constants and the
generator U of the manifold is a recurrent vector field with the associated 1-form A not
being the 1-form of recurrence, then the manifold is conformally conservative.

Type II: For this type
anr )1( −= (I.D.6)

by (I.A.2). Hence r is neither zero nor a constant. From (I.D.6) it follows that

).()1()( XdanXdr −= (I.D.7)

Since a+b = 0 i.e. b = −a, using this and equations (I.1) and (I.D.7) in the equation
(I.D.1) leads to

)}])(())(){(()())(()())([(

)]()(2),()[(
2
1)]()(2),()[(

2
1

),,(

ZAXAYAZAYAXAYAa

XAYAXYgZdaZAYAZYgXda

ZYXH

XZXZ ∇−∇+∇−∇+

−−−=  (I.D.8)

rom which it is evident that H(X,Y,Z) is not in general zero. Next, the following
conditions are imposed:

(i) grada
a

U
2
1=  and (ii) .)( UXAXUX +−=∇

In view of (i) it is obvious that ),
2
1(),( Xgrada
a

gUXg = , that is

)).((2)( XAaXda = (I.D.9)
From (ii) we get

).()(),())(( YAXAYXgYAX +−=∇ (I.D.10)

In virtue of (I.D.9) and (I.D.10), (I.D.8) reduces to .0),,( =ZYXH
This leads to the following:
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Theorem I.5: If in a (QE)n(n>3) the associated scalars are not constants but their
sum is zero and the generator satisfies the conditions (i) and (ii), then the manifold is
conformally conservative.

Geometric significance of the condition ∇∇∇∇XU = −−−−X+A(X)U:
To understand the geometric significance of the above condition, the (n−1)-

dimensional distribution U⊥ in (QE)n orthogonal to U, is considered. If X and Y belong to
U⊥ where Y ≠ λX, then

0),( =UXg and .0),( =UYg (I.D.11)

Since ),)((0),)(( UXgUYg YX ∇==∇  it follows from (I.D.11) and the above
condition that

).,(),(
)()(),(),(),(

UXgXUg
YAXAYXgYUgUYg

YY

XX

∇=∇=
−=∇=∇

 (I.D.12)

Now, .],[ XYYX YX ∇−∇=  Therefore

0),(),(),()],,([ =∇−∇=∇−∇= UXgUYgUXYgUYXg YXYX

by (I.D.12). Hence [X,Y] is orthogonal to U. In other words, [X,Y]∈ U⊥.

Thus the distribution U⊥ is involutive [11]. Hence from Frobenius' theorem [11] it
follows that U⊥ is integrable. This implies that (QE)n is a product manifold.

Theorem I.6: If in a (QE)n(n>3) the associated scalars are not constants but their
sum is zero and the generator of the manifold satisfies the conditions (i) and (ii) then
this (QE)n is a product manifold.

2. ON QUASI EINSTEIN MANIFOLDS:

In the same year, 2000, in a separate paper, M. C. Chaki and M. L. Ghosh [2] studied
some more features of (QE)n (n≥3).

In 1956, S. S. Chern studied a type of Riemannian manifold [12] whose curvature
tensor ' R of type (0,4) satisfies the condition

),(),(),(),(),,,(' ZXBWYBZYBWXBWZYXR −=  (II.1)

where B is a symmetric tensor of type (0,2). Such an n-dimensional manifold was called a
special manifold with the associated symmetric tensor B and has been denoted by the
symbol (ψB)n.

Such a manifold is important for the following reasons:
Firstly, for possessing some remarkable properties relating to curvature and

characteristic classes and secondly for containing a manifold of quasi-constant curvature
[5] as a subclass.

The following results were proved in this paper [2]:
A (QE)3 is a (ψB)3 whose associated symmetric tensor is given by
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).()()2(),()
2

(),( 2
1

2
1

YAXA
ba

bYXgbaYXB
−

+−= (II.2)

A (QE)n is not, in general, a (ψB)n. If, however, a (QE)n(n>3) is conformally flat, then
it is shown that the (QE)n is a (ψB)n whose associated symmetric tensor B is given by

).()(]
)2(

)2)(1([
)2(

),(]
)2)(1(

)2([),( 2
1

2
1

YAXA
bna

nn
n

bYXg
nn

bnaYXB
−−
−−

−
+

−−
−−= (II.3)

Further a conformally flat (QE)n(n>3) is a manifold of quasi-constant curvature.
It is further shown that if the generator of a conformally flat (QE)n(n>3) is an

irrotational vector field, then the (QE)n is a product manifold (ψB)n of quasi-constant
curvature. Moreover some results relating to sectional curvatures of this kind of product
manifold (ψB)n are obtained.

IIA. Three-dimensional Quasi Einstein Manifold:

Here a (QE)3 with associated scalars a, b, associated 1-form A and generator U has
been considered. Contracting (I.1) we get for n = 3

.3 bar += (II.A.1)

It is known [13] that the curvature tensor ' R of type (0,4) in a three-dimensional
manifold (M3,g) has the following form

)],(),(),(),([
2

)],(),(),(),(
),(),(),(),([),,,('

WXgZYgWYgZXgr
ZXgWYSZYgWXS

WYgZXSWXgZYSWZYXR

−+

−+
−=

(II.A.2)

By virtue of (I.1), the equation (II.A.2) can be written as follows:

)],()()(),()()(
),()()(),()()([

)],(),(),(),()[
2

2(),,,('

ZXgWAYAZYgWAXA
WYgZAXAWXgZAYAb

WYgZXgWXgZYgraWZYXR

−+
−+

−−=

(II.A.3)

Using (II.A.1) we obtain

)],()()(),()()(
),()()(),()()([

)],(),(),(),([),,,(' 2

ZXgWAYAZYgWAXA
WYgZAXAWXgZAYAqq

WYgZXgWXgZYgqWZYXR

−+
−′+

−=
 where (II.A.4)

2
1

)
2

( baq −=  and (II.A.5)
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.)2( 2
1

ba
bq

−
=′ (II.A.6)

Substitution of
)()('),(),( YAXAqYXqgYXB += (II.A.7)

in (II.A.4) leads to

),(),(),(),(),,,(' ZXBWYBZYBWXBWZYXR −= . (II.A.8)

By virtue of (II.A.5) to (II.A.7) the following theorem is stated:

Theorem II.1: Every (QE)3 is a (ψB)3 whose associated symmetric tensor B is given
by (II.2).

Remark: From (I.1) and (II.A.7) it is obtained that

).()(
)(2

)
2

(),()
2

(1),( 2
1

YAXA
ba

babYXSba
a

YXB
−

++−= (II.A.9)

From this it follows that in general, B is different from S, but when (a+b) = 0, then

).,(1),( YXS
a

YXB =

IIB. Conformally flat (QE)n(n>3):

In this case, contracting (I.1) one obtains (I.A.2). It is known [14] that in case of a
conformally flat Riemannian manifold (Mn,g)(n>3), the curvature tensor ' R of type (0,4)
has the following form:

)],(),(),(),([
)2)(1(

)],(),(),(),(

),(),(),(),([
)2(

1),,,('

WXgZYgWYgZXg
nn

r
ZXgWYSZYgWXS

WYgZXSWXgZYS
n

WZYXR

−
−−

+

−+

−
−

=

(II.B.1)

Using (I.1) and (I.A.2) the equation (II.B.1) can be written as follows:

)],()()(),()()(

),()()(),()()([
2

)],(),(),(),([
)2)(1(

)2(),,,('

ZXgWAYAZYgWAXA

WYgZAXAWXgZAYA
n

b

WYgZXgWXgZYg
nn

bnaWZYXR

−+

−
−

+

−
−−
−−=

(II.B.2)

The following substitution

)()(),(),( YAXApYXpgYXB ′+=  with (II.B.3)

2
1

]
)2)(1(

)2([
−−
−−=

nn
bnap  and (II.B.4)
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,]
)2(

)2)(1([
2

2
1

bna
nn

n
bp

−−
−−

−
=′ (II.B.5)

leads to
),(),(),(),(),,,(' ZXBWYBZYBWXBWZYXR −= . (II.B.6)

The above results are stated in the following theorem:

Theorem II.2: Every conformally flat (QE)n(n>3) is a (ψB)n whose associated
symmetric tensor B is given by (II.B.3).

Remark 1: In general, B is different from S, but when (a+b) = 0, B(X,Y) =

).,(
)2(

1 YXS
na −

Remark 2: In the following it is established that a (ψB)n a manifold of quasi-constant
curvature as a subclass.

In 1972, Chen and Yano [5] introduced the notion of a manifold of quasi-constant
curvature as follows:

A non-flat Riemannian manifold (Mn,g)(n>3) is said to be of quasi-constant curvature
if its curvature tensor ' R of type (0,4) satisfies the following condition:

)],()()(),()()(
),()()(),()()([

)],(),(),(),([),,,('

ZXgWAYAZYgWAXA
WYgZAXAWXgZAYAb

WYgZXgWXgZYgaWZYXR

−+
−+

−=
(II.B.7)

where a and b are scalars of which b ≠ 0 and A is a non-zero 1-form such that
XXAUXg ∀= )(),( , U being a unit vector field. In such a case a and b were called

associated scalars, A was called the associated 1-form and U was called the generator of
the manifold. Such an n-dimensional manifold was denoted by the symbol (QC)n [2].
Putting

)()(),(),( YAXA
a

bYXgaYXB += (II.B.8)

it followed from (II.B.7) that

),(),(),(),(),,,(' ZXBWYBZYBWXBWZYXR −= . (II.B.9)

From (II.B.9) it could be seen that a (QC)n is a (ψB)n.
Remark 3: Comparing (II.B.2) with (II.B.7) it can be concluded that a conformally

flat (QE)n(n>3) is a manifold of quasi-constant curvature.

IIC. Conformally flat (QE)n(n>3) whose generator is an Irrotational vector field:

It is known [16, p.358] that a vector field U in a Riemannian manifold (Mn,g) is said
to be irrotational if

),(),( XUgYUg YX ∇=∇  for every X,Y. (II.C.1)

In this section, the authors considered a conformally flat (QE)n(n>3), whose generator
U satisfies the condition (II.C.1). As in section (I.D), the (n−1)-dimensional distribution
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U⊥ in (QE)n orthogonal to U, is considered. This means that X∈U⊥ if 0),( =UXg  and if
X∈ U⊥ then 0),( =UXg . If X and Y belong to U⊥ where Y ≠ λX, then condition (I.D.11)
will be valid in this case also. In that case, in view of the condition (II.C.1) and because
the Riemannian connection ∇ is of vanishing torsion, i.e. XYYX YX ∇−∇=],[  it follows
that if X,Y∈U⊥  then [X,Y] also belongs to U⊥ and the same conclusions as in section (I.D)
follow i.e. the distribution U⊥ is involutive, U⊥ is integrable and that (QE)n is a product
manifold.

In view of this result and Remark 3 of section IIB above the following theorem is stated:

Theorem II.3: If in a conformally flat (QE)n(n>3), the generator U is an
irrotational vector field, then the (QE)n is a product manifold (ψB)n of quasi-constant
curvature.

IID. Sectional curvatures at a point of a conformally flat (QE)n(n>3)
whose generator is an Irrotational vector field:

From (II.B.2) we have

])(),()(),()()()()([
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−−
−−=

(II.D.1)

where R is the curvature tensor of type (1,3). From (II.D.1) it is obtained that

]),(),([
)2)(1(

)2(),,( YZXgXZYg
nn

bnaZYXR −
−−
−−=  when X,Y,Z∈U⊥, and (II.D.2)

X
n

baUUXR )
1

(),,(
−
+=  when X∈U⊥. (II.D.3)

If k(X,Y) denotes the sectional curvature of (QE)n at a point corresponding to the
section-plane spanned by the vectors X and Y, then it is known that

.
)],([),(),(

]),,,([),( 2YXgYYgXXg
XYYXRgYXk

−
= (II.D.4)

From (II.D.2) it follows that

]),(),(][
)2)(1(

)2([),,( YYXgXYYg
nn

bnaYYXR −
−−
−−=  when X,Y∈U⊥. (II.D.5)

Hence from (II.D.4) it is obtained that

)2)(1(
)2(),(
−−
−−=

nn
bnaYXk  when X,Y∈U⊥. (II.D.6)

Substitution of Y = U yields
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1
),(

−
+=

n
baUXk  when X∈U⊥. (II.D.7)

This leads to the following theorem:

Theorem II.4: If in a conformally flat (QE)n(n>3), the generator U is an irrotational
vector field and U ⊥⊥⊥⊥ is the (n-1)-dimensional distribution orthogonal to U, then the

scalar
)2)(1(

)2(
−−
−−

nn
bna  is the sectional curvature at a point corresponding to the section-

plane spanned by X,Y belonging to U ⊥⊥⊥⊥, and the scalar 
1−

+
n

ba  is the sectional curvature at

a point corresponding to the section-plane spanned by X and U where X∈∈∈∈U ⊥⊥⊥⊥.

3. SOME GLOBAL PROPERTIES OF QUASI EINSTEIN MANIFOLDS:

In this paper, M. C. Chaki and P. K. Ghoshal [3] studied some global properties of a
compact orientable (QE)n without boundary. The following results have been used in the
sequel.

From (I.1)
.)],([)()(),(),( 22 XUXgbXaXAXbAXXagXXS ∀+=+= (III.1)

If θ be the angle between U and any vector X, then

 
),(
),(

),(),(
),(cos

XXg
UXg

UUgXXg
UXg ==θ  by (I.A.1). Hence

.)],([),( 22 UXgXXXg ≥= (III.2)
It follows that

2)],()[(),( UXgbaXXS +≥  when 0>a  and (III.3)

2)(),( XbaXXS +≤  when 0>b . (III.4)

IIIA. Sufficient condition for a compact orientable (QE)n to be conformal to a
sphere in En+1:

By definition, an n-dimensional Riemannian manifold (M,g) is said to be conformal
to another n-dimensional manifold (M′,g′) if there exists a one-one differentiable
mapping (M,g)→ (M′,g′) such that the angle between any two vectors at a point p of M is
always equal to that of the corresponding two vectors at the corresponding point p′ of M′.

Y. Watanabe [16] has given a sufficient condition of conformality of an n-
dimensional Riemannian manifold to an n-dimensional sphere immersed in En+1. Its
statement is as follows:

If in an n-dimensional Riemannian manifold M, there exists a non-parallel vector field
X such that the condition
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dvX
n

ndvdXdvXXS
MMM

22
2
1 )(1),( ∫∫∫ ∂−+= (III.A.1)

holds, then M is conformal to a sphere in En+1, where dv is the volume element of M
and dX and ∂X are the curl and divergence of X respectively.

In this section the authors considered a compact orientable quasi Einstein manifold
(QE)n=M without boundary, with associated scalars a,b and generator U. It satisfies (I.1)
and (I.2). Hence .),( baUUS +=

In virtue of this and putting X = U, condition (III.A.1) takes the following form

.)()1()( 22
2
1 ∫∫∫ ∂−+=+

MMM

dvU
n

ndvdUdvba (III.A.2)

Next, it is supposed that .gradfU =
Then U cannot be a parallel vector field, for otherwise 0=∇U  or 0)( =∇ gradf  i.e.

,0=∆f  where ∆ denotes the Laplacian operator and ∇ denotes the covariant
differentiation with respect to the metric of m. Hence by Bochner's lemma [17, p.39], f is
constant, which implies that U = 0 which is not admissible.

Since by assumption, gradfU = , thus .02 =dU  Hence (III.A.2) takes the form

.)()1()( 2∫∫ ∂−=+
MM

dvU
n

ndvba (III.A.3)

In that case, by Watanabe's condition (III.A.1), the manifold M is conformal to a
sphere in En+1. This is stated in the following theorem:

Theorem III.1: If in a compact, orientable quasi Einstein manifold M=(QE)n(n≥≥≥≥3)
without boundary, having a, b as associated scalars, the generator U is the gradient of
a scalar function and satisfies the condition (III.A.3), then the manifold (QE)n is
conformal to a sphere immersed in En+1.

IIIB. Killing vector field in a compact orientable (QE)n(n≥≥≥≥3) without boundary:

In this section, a compact, orientable (QE)n=M, (n≥3) without boundary having a, b as
associated scalars and U as the generator, has been considered.

It is known [16, 17(p.43)] that in such a manifold M, the following relation holds:

.0])(),([ 22 XdvdivXXXXS
M

∀=−∇−∫ (III.B.1)

If X is a killing vector field, then div X = 0 [18, p.43]. Hence (III.B.1) takes the form

∫ =∇−
M

dvXXXS .0]),([ 2 (III.B.2)

If b>0, then by (III.4), ).,()( 2 XXSXba ≥+
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Therefore, .),()( 222 XXXSXXba ∇−≥∇−+

Consequently, dvXXXSdvXXba
M M
∫ ∫ ∇−≥∇−+ ]),([])[( 222

and by (III.B.2) ∫ ≥∇−+
M

dvXXba .0])[( 22

If a + b = 0, then ∫ =∇−+
M

dvXXba .0])[( 22

Therefore X = 0. This leads to the following result:

Theorem III.2: If in a compact, orientable quasi Einstein manifold M=(QE)n(n≥≥≥≥3)
without boundary the associated scalars are such that b>0 and a+b<0, then there exists
no non- zero Killing vector field in this manifold.

Two corollaries of the above theorem follow easily.

Corollary 1: If in a compact, orientable quasi Einstein manifold M=(QE)n(n≥≥≥≥3)
without boundary, the generator U is a Killing vector field, then the following relation
holds

∫ ≥∇−+
M

dvUba .0])[( 2

Corollary 2: If in a compact, orientable quasi Einstein manifold M=(QE)n(n≥≥≥≥3)
without boundary, b>0 and a+b<0, then the generator U of the manifold cannot be a
Killing vector field.

IIIC. Killing p-form in a compact, orientable conformally flat M=(QE)n(n≥≥≥≥3)
without boundary:

It is assumed that w is a p-form in a compact, orientable conformally flat
M=(QE)n(n>3) without boundary and Fp(w,w) is the well-known [17] quadratic form
given by

kl
ii

iiji
ijkl

j
ii

iii
ijp p

p

p

p wwRpwwSwwF ......
.......

.........
.......

3

3

2

2

2
)1(),( −+= (III.C.1)

where Rijkl and Sij are the components of the curvature tensor R of type (0,4) and the Ricci
tensor of type (0,2) respectively of the (QE)n.

Since the (QE)n is chosen to be conformally flat, the Riemann tensor R can be
expressed as follows [18(p.234); 14(p.40)] :
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 (III.C.2)

By (I.1) it can be written that
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)],()()(),()()(
),()()(),()()([

)],(),(),(),([),,,(

ZXgWAYAZYgWAXA
WYgZAXAWXgZAYAb

WYgZXgWXgZYgaWZYXR

−+
−′+

−′=
 where

)2)(1()1( −−
−

−
=′

nn
b

n
aa  and .

)2( −
=′

n
bb (III.C.3)

In view of (I.1) and (III.C.2), equation (III.C.1) can be expressed as follows:

22 ].[)2(])[(),( wUbpnwbapnwwFp ′−+′+′−= (III.C.4)

where the components of w are ,......21 piiiw  those of U are iU  and wU .  is a tensor of type

(0, p−1) with components 
11 ....... −piji

jwU  and .........
.......

2
21

21

p

p

iii
iii www =

Using (III.C.3) the relation (III.C.4) can be expressed as follows:

.].[
)2(

)2(
)2)(1(

)]1()2)([(),( 22 wU
n
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nn

pbanpnwwFp −
−+

−−
−+−−= (III.C.5)

It is now supposed that w is a Killing p-form. Then it is known [17] that

∫ =∇−
nQE

p dvwwwF
)(

2 .0]),([ (III.C.6)

In virtue of (III.C.5) equation (III.C.6) can be expressed as follows:

∫ =∇−
−

−+
−−

−+−−

nQE

dvwwUb
n

pnw
nn

pbanpn

)(

222 .0]).(
)2(
)2(

)2)(1(
)1()2)(([  (III.C.7)

If 0)2( <− bpn  and 0)1()2)(( <−+−− pbanpn  then from (III.C.7) it follows that .0=w
This leads to the following result.

Theorem III.3: If in a compact, orientable conformally flat (QE)n(n>3) without
boundary, (n-2p)b<0 and (n-p)(n-2)a + b(p-1)<0, where p>1 but <n, then there exists
no non-zero Killing p-form in such a manifold.

4. GENERALIZED QUASI EINSTEIN MANIFOLDS:

The notions of a generalized quasi Einstein manifold and a manifold of generalized
quasi constant curvature were introduced by M. C. Chaki [4] in 2001.

A non-flat Riemannian manifold (Mn, g)(n≥3) is called a generalized quasi Einstein
manifold G(QE)n if its Ricci tensor S of type (0,2) is not identically zero and satisfies the
condition

)]()()()([)()(),(),( XBYAYBXAcYAXbAYXagYXS +++= (IV.1)

where a, b, c are scalars of which b≠0, c≠0, A, B are non-zero 1-forms such that
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)(),( XAUXg =  and )(),( XBVXg = (IV.2)

for all X and U, V are two unit vector fields perpendicular to each other.
In such a case a, b, c were called the associated scalars, A and B the associated 1-

forms and U and V the generators of the manifold. Such an n-dimensional manifold has
been denoted by the symbol G(QE)n.

For c=0, (IV.1) takes the form (I.1). This justifies the name "generalized quasi
Einstein manifold" for this new type of manifold.

As already mentioned in section IIB, in 1972, Chen and Yano [5] introduced the
notion of a manifold of quasi-constant curvature, which is defined by the relation (II.B.7).

A generalization of a manifold of quasi-constant curvature, called a manifold of
generalized quasi-constant curvature, denoted by G(QC)n, has been done by Chaki [4].
This was necessary for the study of G(QE)n.

A manifold of generalized quasi-constant curvature has been defined as follows:
A non-flat Riemannian manifold (Mn, g)(n≥3) is called a manifold of generalized

quasi constant curvature if its curvature tensor ' R of type (0,4) satisfies the condition:

)}]()()()(){,()}()()()(){,(
)}()()()(){,()}()()()(){,([

)],()()(),()()(
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)],(),(),(),([),,,('
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(IV.3)

where a, b, c are scalars of which b≠0, A, B are two non-zero 1-forms such that

)(),( XAUXg =  and )(),( XBVXg = (IV.4)

for all X and U, V are two mutually perpendicular unit vector fields.
 In such a case a, b, c were called the associated scalars, A and B the associated 1-

forms and U, V were called the generators of the manifold. For c = 0, (IV.3) takes the
form (II.B.7) and the manifold becomes a manifold of quasi-constant curvature. The
following results were established in this paper:

In a G(QE)n, the scalars a and a + b are the Ricci curvatures in the directions of the

vector fields V and U respectively and the scalar c is less than ,
2

1 l  where l  is the

length of the Ricci tensor S.
Every G(QE)3 is a G(QC)3 but a G(QE)n(n>3) is not, in general, a G(QC)n.
A G(QE)n(n>3) is a G(QC)n if it is conformally flat.
A G(QC)n (n>3) is a conformally flat G(QE)n.
If U⊥ denotes the (n−1)-dimensional distribution of a G(QE)n(n>3) orthogonal to the

generator U, then the sectional curvature of the plane determined by the vectors X, Y is

)2)(1(
)23(

−−
+−

nn
ban  when X,Y∈U⊥, while the sectional curvature of the plane determined by the

vectors X, U is 
)2)(1(

)23(
−−
+−

nn
nban  when X ∈ U⊥.
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IVA. Scalar curvature and the associated scalars of a G(QE)n(n>3):

In this section, a G(QE)n with associated scalars a, b, c, associated 1-forms A, B and
generators U and V corresponding to the 1-forms A and B, respectively, was considered.
In virtue of (IV.4) we must have

,1),( =UUg  1),( =VVg  and 0)()(),( === UBVAVUg (IV.A.1)

Contraction of (IV.1) over X and Y gave

,),( baUUS += (IV.A.3)
aVVS =),(  and (IV.A.4)

.),( cVUS =  (IV.A.5)

If X is a unit vector field, then S(X,X) is the Ricci curvature in the direction of X.
Hence, from (IV.A.4) and (IV.A.5), it can be stated that (a + b) and a are the Ricci
curvatures in the directions of U and V, respectively. It is assumed that

).,(),( YXSYLXg =  (IV.A.6)

Also, the square of the length of the Ricci tensor S is denoted by l 
2
 Then,

),(2
ii eLeSl = (IV.A.7)

where {ei}, i=1,2,….,n is an orthonormal basis of the tangent space of G(QE)n. Equation
(IV.1) gives .2)()1(),( 222 cbaaneLeS ii +++−=  Hence .0)()1(2 2222 ≥++−=− baancl
Therefore

22 2cl >  since 02 22 ≠− cl (IV.A.8)
which means that

lc
2

1< . (IV.A.9)

The following theorem sums up the above deduction;

Theorem IV.1: In a G(QE)n(n>3) the scalar (a + b) and a are the Ricci curvatures
in the directions of the generators U and V, respectively and the associated scalar c is
less than l

2
1 , where l is the length of the Ricci tensor S.

IVB. Three-dimensional generalized quasi Einstein manifold:

In this section, a G(QE)3 has been considered. In this case
(IV.B.1) .3 bar +=
It is known [13] that in a 3-dimensional Riemannian manifold (Mn,g) the curvature

tensor ' R of type (0,4) has the following form:
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Using (IV.1), equation (IV.B.2) can be written as
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(IV.B.3)

In virtue of (IV.3),it follows from (IV.B.3) that a G(QE)3 is a G(QC)3. this leads to the
following result:

Theorem IV.2: Every G(QE)3 is a G(QC)3.

IVC. Conformally flat G(QE)n(n>3):

In general, a G(QE)n(n>3) is not a G(QC)n. In this section, a conformally flat G(QE)n
has been considered. It is found that in such a case the G(QE)n becomes a G(QC)n.

It is known [14] that in a conformally flat Riemannian manifold (Mn,g)(n>3), the
curvature tensor ' R of type (0,4) has the following form:
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Using (IV.1), equation (IV.C.1) can be expressed as follows:
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(IV.C.2)

In virtue of (IV.3) it follows from (IV.C.2) that a conformally flat G(QE)n is a G(QC)n

since b≠0. This leads to the following theorem:
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Theorem IV.3: Every conformally flat G(QE)n (n>3) is a G(QC)n.
To find whether every G(QC)n (n≥3) is a G(QE)n, equation (IV.3) is contracted over Y

and Z. This yields

)].()()()()[2(
)()()2(),(])1([),(
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(IV.C.3)

In virtue of (IV.1) it follows from (IV.C.3) that a G(QC)n(n≥3) is a G(QE)n since b≠0.
In a Riemannian manifold (Mn,g)(n>3), the conformal curvature tensor ' C of type

(0,4) has the following form:
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(IV.C.4)

Using (IV.3) and (IV.C.3) it follows from (IV.C.4) that

0),,,(' =WZYXC (IV.C.5)

i.e. the manifold under consideration is conformally flat. The following theorem can
therefore be stated:

Theorem IV.4: Every G(QC)n (n≥≥≥≥3) is a G(QE)n while every G(QC)n(n>3) is a
conformally flat G(QE)n.

IVD. Sectional curvatures at a point of a conformally flat G(QE)n(n>3):

Once again the (n−1)-dimensional distribution U ⊥ in a conformally flat G(QE)n(n>3)
orthogonal to U, is considered as in sections ID, IIC and IID. If X and Y belong to U ⊥

where Y ≠ λX, then condition (I.D.11) will be valid in this case also.
The sectional curvature K of the planes determined by the vectors X,Y∈ U ⊥ and by

the vectors X,U where X ∈ U ⊥ has been determined in this section. Substitution of Z=Y
and W=X in (IV.C.1) yields
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The sectional curvature of the plane determined by X,Y is given by (II.D.4) which
using (IV.D.1)in this case becomes
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The sectional curvature K(X,U) of the plane determined by X and U is given by
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But

).,(]
)2()2)(1(

)1(2[),,,(' XXg
n

b
nn

rnaXUUXR
−

+
−−
+−= (IV.D.4)

Hence from (IV.D.3) it is obtained that
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To sum up, the following theorem has been stated:
Theorem IV.5: In a conformally flat G(QE)n (n>3) the sectional curvature of the

plane determined by two vectors X,Y∈∈∈∈U⊥⊥⊥⊥ is 
)2)(1(
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nn
ban  while the sectional curvature

of the plane determined by two vectors X,U where X∈∈∈∈ U⊥⊥⊥⊥ is .
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nban

5. PHYSICAL INTERPRETATION

It is known [15, p.339] that for a perfect fluid space-time of general relativity, the
Einstein field equation without cosmological constant is of the form

])[(2 ijjiij
r

ij pguupgR ++ρ=− (V.1)

where ρ and p are the energy density and the isotropic pressure of the fluid respectively,
R is the Ricci tensor and r is the scalar curvature of the space-time.

The above equation can be recast into the form

jiijij uugR β+α= (V.2)

with α = (r/2 + p) and .p+ρ=β  Here both α and β are scalars, of which β ≠ 0 i.e.
.0≠+ρ p  If β = 0, then the space-time will reduce to the well-known Einstein manifold.

In the index-free notation equation (V.2) becomes

)()(),(),( YAXAYXgYXS β+α= (V.3)

with S(X,Y), A(X) and A(Y) has the same meaning as in equation (I.1). Comparing (V.3)
with (I.1) we can say that a perfect fluid space-time of general relativity is a four-
dimensional semi-Riemannnian quasi Einstein manifold of Lorentz signature (+,+,+,-)
and whose associated scalars are r/2 + p and p+ρ  respectively. Further, if U represents
the unit timelike velocity vector field of the flow, then U will be an eigen vector of the
field with a simple eigen value r/2 + ρ + 2p. All eigen vectors orthogonal to U will have
eigen value r/2 + p  with multiplicity (n − 1) i.e. of multiplicity 3 for the space-time.

The importance of a generalized quasi Einstein manifold lies in the fact that such a
four-dimensional semi-Riemannian manifold is relevant to the study of a general
relativistic fluid space-time admitting heat flux [6], where the vectors U and V referred to
in sections IV and IVA are now identified as the velocity vector field and the heat flux
vector field of the fluid respectively.
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Einstein field equation without cosmological constant for a fluid admitting heat flux is
written as

)()()()(

),()()()(),(),( 2

XBYAYBXA

YXpgYAXApYXgYXS r

++

++ρ=−
(V.4)

where the symbols r, ρ, p, g, S and A have the same meanings as before.
Rearranging terms in the above equation we get

).()()()()()()(),()(),( 2 XBYAYBXAYAXApYXgpYXS r +++ρ++= (V.5)

Comparing (V.5) with (IV.1) we can say that a fluid space-time of general relativity
admitting heat flux is a four-dimensional semi-Riemannnian generalized quasi Einstein
manifold of Lorentz signature (+,+,+,-) whose associated scalars are a = (r/2 + p)
b = (ρ + p) and c = 1 respectively. The Ricci curvatures in the directions of the velocity
vector U and the heat flux vector V are (r/2 + ρ + 2p) and (r/2 + p) respectively. The
length l of the Ricci tensor S is greater than √2.

For a conformally flat generalized quasi Einstein space-time admitting heat flux, the
sectional curvature of the plane containing U and V will be given by

).,,,('
)},({),(),(

),,,('),( 2 VUUVR
VUgUUgVVg

VUUVRUVK =
−

=

Since from equation (IV.3) we find that ' R(V,U,U,V) is determined by a and b which
in turn depends on the energy density ρ and the pressure p of the fluid, the sectional
curvature of the plane containing U and V also depends on ρ and p.

6. CONCLUDING REMARKS

In Cosmology, the reason for studying various types of space-time models is mainly for
the purpose of representing the different phases in the evolution of the Universe. Broadly
speaking, the evolution of the universe to its present state can be divided into three phases:

The initial phase just after the big bang when the effects of both viscosity and heat flux
were quite pronounced.

The intermediate phase when the effect of viscosity was no longer significant but the
heat flux was still not negligible.

The final phase, which extends to the present state of the Universe when both the
effects of viscosity and the heat flux have become negligible and the matter content of the
Universe may be assumed to be a perfect fluid.

The importance of the study of the G(QE)n and (QE)n lies in the fact that these space-
time manifolds represent the second and the third phase respectively in the evolution of the
Universe. What remains now is the representation of the first phase in the evolution of the
Universe. Significant progresses have been made in that direction and the results are
expected to be published soon.
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KVAZI-EINSTEIN-OVE I GENERALISANE
KVAZI-EINSTEIN-OVE MNOGOSTRUKOSTI

Sarbari Guha

Profesor M.C. Chaki je uveo pojam kvazi-Eustein ova mnogostrukost [1], obeleživši je sa
( )nQE , čiji je RICCI-jev tenzor S tipa (0,2) i nije identički jednak nulii zadovoljava sledeći uslov:

S(X,Y) = a g(X,Y) + b A(X)A(Y)
gde su ba, skalari od kojih je 0≠b and A je nenulta 1-forma takva da je

g(X,U) = A(X)
za sva vektorska polja X, U je jedinični vektor polja.

Ako postoji 4-dimenzionalna Lorencova mnogostrukost čiji je Ricci-jev tenzor u obliku
prethodne forme, tada postoji takva prostor-vreme, koja predstavlja prostor-vreme idealnog fluida
u kosmologiji.

Istraživanja Karcher-a [2] i drugih su pokazala konformni ravni prostor-vreme idealnog fluida
imaju geometrijsku strukturu kvazi-koonstantne krivine.  Utvrdjeno je da da mnogostrukost kvazi-
konstantne strukture je prirodna podklasa kvazi-Eunstein-ove mnogostrukosti. Istraživanja kvazi-
Eunstein-ovih mnogostrukosti nam pomažu da dublje razumemo globalni karakter univerzuma [3]
uključujući i topologiju. Kao posledica toga, u ovom radu je studirana priroda singulariteta
definitnih formi sa stanovišta diferencijalne geometrije. Istraživanja mnogostrukosti prostor-vreme
omogućavaju uvodjenje viskoznog fluida i eletromagnetskog  polja, kao i buduće generalizacije
Ricci-jevih tenzora, koji su u toku.


