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Abstract. This is a survey article on weakly symmetric structures on a Riemannian
manifold.The study of weakly symmetric and weakly projective symmetric Riemannian
manifold were initiated byTamassy and Binh. Later on several authors studied weakly
symmetric Riemannian manifold and analogous structures, viz. weakly Ricci symmetric,
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1. INTRODUCTION

The notions of pseudo symmetric and pseudo Ricci symmetric Riemannian manifolds
have been introduced by M. C. Chaki [1,2]. Later on several authors studied such
manifolds and also analogous structures on a Riemannian manifold [3,4,5,6,7,8,...,23].

We recall the definition of these manifolds. Let (M,g) be an n-dimensional
Riemannian manifold and U a tensor field of type [1,3] on it. Let X,Y,Z V∈χ(M) be
tangent vector fields and A a 1-form on M. Let us consider the relation

 (∇XU)(Y,Z)V = 2A(X)U(Y,Z)V + A(Y)U(X,Z)V + A(Z)U(Y,X)V    (1)
+ A(V)U(Y,Z)X + g(U(Y,Z)V,X)ρ,

where ρ∈χ(M) is a vector field defined by g(X,ρ) = A(X) ∀X , ∇ denotes the Levi-Civita
connection of (M,g). If [1] holds for U ≡ R (the Riemannian curvature tensor of (M,g)),
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then the manifold is called pseudo symmetric [1]; (1) holds for U ≡ C (the conformal
curvature tensor of the manifold (M,g)) is called pseudo comformally symmetric [10]; and
(1) holds for U≡W(the projective curvature tensor of (M,g)), the manifold is called
pseudo projective symmetric [7]; A is the associated 1-form. Hence a pseudo symmetric
manifold is defined by

(∇XR)(Y,Z)V = 2A(X)R(Y,Z)V + A(Y)R(X,Z)V + A(Z)R(Y,X)V  (2)
                                           + A(V)R(Y,Z)X + g(R(Y,Z)V,X)ρ.

If the Ricci tensor S of type (0,2) of (M,g) is non-zero and satisfies the relation

(∇XS)(Y,Z) = 2A(X)S(Y,Z) + A(Y)S(X,Z) + A(Z)S(Y,X), (3)

then the manifold is called pseudo Ricci symmetric manifold [2]. Pseudo symmetric
manifold is denoted by (PS)n and in analogous way pseudo conformally symmetric, pseudo
Ricci symmetric and pseudo projective symmetric manifolds are denoted by (PCS)n , (PRS)n
and (PWS)n respectively. In case of the vanishing of A the pseudo symmetric Riemannian
manifold is symmetric, for in this case ∇R = 0. The class of pseudo symmetric manifolds
arose during the study of conformally flat space of class one [24].

Also Prvanović [15] proved that every recurrent manifold satisfies (2). Conversly, if
the manifold (M, g) besides (2) satisfies also

A(X)R(Y,Z) + A(Y)R(Z,X) + A(Z)R(X,Y) = 0,
then (2) reduces to

 (∇XR)(Y,Z)W = 4A(X)R(Y,Z)W

i.e., (2) reduces to a recurrent manifold.
In [16] Ewert-Krzemieniewski proved the existence of the pseudo symmetric

manifold satisfying (2).
It may be mentioned that the pseudo symmetry in the sense of Chaki is different from

that of R. Deszcz [25].
In 1989 Tamassy and Binh [26] introduced the notion of weakly symmetric and weakly

projective symmetric Riemannian manifolds by weakening the condition of symmetry.
A non-flat Riemannian manifold (M,g) of dimension n (>2) is called weakly symmetric

if there  exists 1-forms A, B, D, E and a vector field F such that

(∇XR)(Y,Z)V = A(X)R(Y,Z)V + B(Y)R(X,Z)V + D(Z)R(Y,X)V (4)
                                            + E(V)R(Y,Z)X + g(R(Y,Z)V,X)F,   X,Y,Z,V ∈χ(M)

where R is the curvature tensor of (M, g). A non-flat Riemannian manifold is called
weakly projective symmetric if the projective curvature tensor W given by

W(X, Y)Z = R(X, Y)Z-(1/n-1)[S(Y,Z)X-S(X,Z)Y]

satisfies the relation (4). Weakly symmetric and weakly projective symmetric Riemannian
manifolds are denoted by (WS)n and  (WWS)n  respectively. In a subsequent paper Tamassy
and Binh [27] introduced the notion of weakly Ricci symmetric manifold. If  B = C = D
= (1/2)A, then the weakly symmetric manifold reduces to a pseudo symmetric manifold.

A non-flat Riemannian manifold is called weakly Ricci symmetric if the Ricci tensor
S is non-zero and satisfies the condition

(∇XS)(Y, Z) = A(X)S(Y,Z) + B(Y)S(X,Z) + D(Z)S(Y,X) (5)
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where A, B, D are 1-forms. Such a manifold is denoted by (WRS)n.
Let  g(X,α) = A(X), g(X, β) = B(X), g(X,γ) = D(X) and g(X,δ) = E(X),  ∀X∈χ(M).
Then α, β, γ, δ and F ∈ χ(M)  will be called the basic vector fields of weakly symmetric

structures on a Riemannian manifold. If (4) holds for R≡C where C is the conformal
curvature tensor defined by

C(X,Y)Z = R(X,Y)Z-1/(n-2)[S(Y,Z)X-S(X,Z)Y  + g(Y,Z)QX - g(X,Z)QY]
+ r/((n-1)(n-2))[g(Y,Z)X-g(X,Z)Y],

r denotes the scalar curvature of the manifold and Q is the symmetric endomorphism
corresponding to the Ricci tensor S defined by S(X,Y) = g(QX,Y), then the manifold is
called weakly conformally symmetric manifold [28] and such a manifold is denoted by
(WCS)n. Thus a (WCS)n is defined by

(∇XC)(Y,Z)V = A(X)C(Y,Z)V + B(Y)C(X,Z)V + D(Z)C(Y,X)V (6)
+ E(V)C(Y,Z)X + g(C(Y,Z)V,X)F.

Later in 1994 M. C. Chaki [29] generalized the notion of pseudo symmetric manifold
and called it generalized pseudo symmetric manifold.

A non-flat Riemannian manifold is called generalized pseudo symmetric if the
curvature tensor R satisfies

(∇XR) (Y,Z)V = 2A(X) R(Y,Z)V + B(Y) R(X,Z)V + D(Z) R(Y,X)V (7)
 +  E(V) R(Y,Z)X + g( R(Y,Z)V,X)ρ

where ρ is a vector field given by g(X,ρ) = A(X) ∀X.  Such a manifold is denoted by
(GPS)n. (4) gives (7) if  α and F are related by

g(X,F) = α(X)  ∀X.

So (7) is a litter stronger assumption than (4). Thus weakly symmetric structures are
little weaker than generalized pseudo symmetric structures on a Riemannian manifold.

Subsequently Chaki and Koley [30] introduced the notion of generalized pseudo Ricci
symmetric manifld  which is defined as follows:

An n-dimensional Riemannian manifold is said to be a generalized pseudo Ricci
symmetric manifld if the Ricci tensor S is non-zero and satisfies the condition

 (∇XS)(Y,Z) = 2A(X) S(Y,Z) + B(Y) S(X,Z) + D(Z) S(X,Y). (8)

Such a manifold is denoted by (GPRS)n.

2. ASSOCIATED 1-FORMS OF A (WS)N AND (WCS)N

The equation (4) can be written as

(∇X'R)(Y,Z,U,V) = A(X)'R(Y,Z,U,V) + B(Y)'R(X,Z,U,V) + C(Z)'R(Y,X,U,V)  (2.1)
+ D(U)'R(Y,Z,X,V) + E(V)'R(Y,Z,U,X)

where 'R(Y,Z,U,V) = g(R(Y,Z)U,V).
Interchanging Y and Z in (2.1) and then adding with (2.1) we obtain

[B(Y)-C(Y)]'R(X,Z,U,V) + [B(Z)-C(Z)]'R(Y,X,U,V) = 0.
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From this relation M. Prvanović [31] proved that the 1-form B and C are equal. In a
similar manner, interchanging U and V in (2.1) we get D = E. Thus the defining relation
of a (WS)n reduces to

(∇X'R)(Y,Z,U,V) = A(X)'R(Y,Z,U,V) + B(Y)'R(X,Z,U,V) + B(Z)'R(Y,X,U,V) (2.2)
+ D(U)'R(Y,Z,X,V) + D(V)'R(Y,Z,U,X).

Since the conformal curvature tensor satisfies the same skew-symmetric property as
the Riemannian curvature tensor, the defining relation of  (WCS)n can be expressed in the
following form:

(∇X'C)(Y,Z,U,V) = A(X)'C(Y,Z,U,V) + B(Y)'C(X,Z,U,V) + B(Z)'C(Y,X,U,V) (2.3)
+ D(U)'C(Y,Z,X,V) + D(V)'C(Y,Z,U,X)

where 'C(X,Y,U,V) = g(C(X,Y)U,V).
It may be mentioned that the defining relation of a weakly projective symmetric

manifold (WWS)n can not be expressed in the above reduced form.

3. EXAMPLES OF (WS)N, (WRS)N AND (WCS)N

In this section we give the examples of a (WS)n, (WRS)n and (WCS)n.
We define the metric g in the coordinate space Rn  (n ≥4) by the formula

ds2 = φ(dx1)2 + kαβ dxαdxβ + 2dx1dxn, (3.1)

where [kαβ] is a symmetric and non-singular matrix consisting of constants and φ is a
function of x1,x2,...,xn-1 and independent of xn. Here each Latin index run over 1,2,...,n
and each Greek index over 2,3,..., n-1.

 In the metric considered, the only non-vanishing components of the Christoffel
symbols and the curvature tensor  Rhijk are [32]
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where (.) denotes the partial differentiation and [kαβ] is the inverse matrix.

An example of a (WS)n is given by the following:

Theorem 3.1. (De and Bandyopadhyay [33] ) Let Vn (n≥4) be a Riemannian space with
a metric of the form

ds2 = φ(dx1)2 + δαβdxαdxβ + 2dx 1dxn,

φ = δαβxαxβex1
.

Then Vn  is a weakly symmetric space which is not symmetric .
Considering the same metric as in Theorem 3.1 we (De and  Ghosh [34]) prove the

existence of a (WRS)n .
For an example of a (WCS)n the following theorem is obtained.
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Theorem 3.2. (De and Bondyopadhyay [28]) Let Vn (n≥4) be a Riemannian space with
a metric of the form

ds2 = φ(dx1)2 + δαβdxαdxβ + 2dx1dxn,
φ = (Mαβ + δαβ)xαxβ ex1

where Mαβ are constants and satisfy the relations
                                                                                                                n-1

Mαβ = 0 for α≠β; Mαβ≠0 for α = β  and  ΣΣΣΣMαβ = 0.
                                                                                                               α=2
 Then Vn is a weakly conformally symmetric space with zero scalar curvature which is

neither conformally flat nor conformally symmetric.

4. DECOMPOSABLE AND SEMI-DECOMPOSABLE (WS)N

A Riemannian space is said to be decomposable if it can be expressed as a product
Vr×Vn-r for some r i.e., if coordinates can be found so that its metric takes the form

                         r                                 n

ds2  =   Σ gab dx a dxb + Σ gαβdxα  dxβ, (4.1)
                                                                         a,b=1                        α,β=r+1

where gab are functions of x1,  x2, ...,  xr and gαβ are functions of xr + 1, xr + 2,  ...,  xn only;
a,b,c, ...  are taken to have range 1 to r and α,β,γ, ... to have the range r + 1 to n. The two
parts of (3.1) are the metrices of a Vr and Vn-r which are called the decomposition spaces
of Vn [35].

Considering decomposable (WS)n with A≠0, T. Q. Binh [36] proved the following
Theorem 4.1. If a (WS)n with A≠0 is a decomposable space Vr×Vn-r (r, n-r≥2),  then

one of the decomposition spaces is flat and the other is weakly symmetric; and conversly,
if in a decomposable Vn = Vr×Vn-r one of the decomposition spaces is flat and the other is
weakly symmetric with A≠0, then Vr is a (WS)n with A≠0.

In the same paper [36] T. Q. Binh proved also the following
Theorem 4.2.  If a (WS)n has cyclic Ricci tensor, moreover

Ω = B + C + D + E
is not orthogonal to

θ = A + C + D

and the cyclic sum ΣA(X)θ(Y)θ(Z) is not  zero for all X, Y, Z, then the space is an
(X,Y,Z) Einstein space of zero scalar curvature.

Remark. Theorem 4.1 and Theorem 4.2 generalizes the results of a (PS)n studied by
Chaki and De [4]. Moreover Binh [36] proved the converse part in theorem 4.1.

An n-dimensional (n>2) Riemannian space Vn is said to be semi-decomposable [37] if
in some coordinates its metric is given by

ds2 = gijdxIdxj = gabdxadxb + σgαβdxαdxβ (4.2)

where i,j,k,... = 1, 2, ..., n ; a,b,c,... =1,2,...,  q(q<n), α,β,γ, ... =1,2,...,n; gab and σ are
function of x1, ..., xq  only and gαβ are functions of xq + 1, ..., xn only.

*

*

  *
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The two parts of (1.3) are the matrices of Vq and Vn-q which are called the decompo-
sition spaces of Vn. Each object denoted by a bar is assumed to be formed from gab and
each object denoted by a star form gαβ. If, in particular, σ = 1, then Vn reduces to a
decompoable space. The decomposibility of (WS)n has been studied by Binh [36].

Concerning the semi-decomposibily of (WS)n we prove the following:
Theorem 4.3. [38] For a semi-decomposable (WS)n with non-constant funstion σ, the

part Vq  (q>2)  is a (WS)n and if Ae is not a gradient vector, then the part Vn-q is a space of
constant curvature.

From (2.2) we obtain
dr(X) = A(X)r + 2S(X,P)

where  P,  is a vector field defined by g(X,P) = T(X)
where T(X) = A(X) + B(X).

Let V(X) = S(X, P).
Then the vector field corresponding to the 1-form V shall be called the Ricci-associate

of the vector field P. Considering the Ricci-associate of P  we prove the following
Theorem 4.4.  [38] In a (WS)n (n>2) of constant scalar curvature, the Ricci-associate

of P is collinear with the vector field α defined by g(X,α) = A(X)  and in a (WS)n (n>2)
of non-constant scalar curvature, the Ricci-associate of P and α can not be both gradient
unless the vector dr(X)   is collinear with both α and the Ricci-associate of P.

5. SOME RESULTS OF (WS)N

Now we recall the definition of a B-space given by P. Venzi [39]. Let L(θ) be a vector
space formed by all vector θ satisfying

θlRnijk + θjRnikl + θkRnilj = 0. (5.1)

A Riemannian space is said to be a B-space if dim L(θ)≥1.
Concerning B-space M. Prvanović [31] proved the following Theorems.
Theorem 5.1. If a weakly symmetric Riemannian manifold is not pseudo symmetric

(in the sence of Chaki), then it is a B-space.
Theorem 5.2. In a B-space there exists a symmetric tensor field Tij such that the

curvature tensor has the form

Rhijk = Thkθiθj + Tijθhθk-Thjθiθk-Tikθhθj,

where θ is the basis vector of the space L(θ). In order that such a space with dim L(θ) = 1
be weakly symmetry, it is necessary and sufficient that Tij and θj satisfy some conditions.
This weak symmetry is of the form

∇rRhijk = FrRhijk + DhRrijk + DIRhrjk + DjRhirk + DkRhijr. (5.3)

Theorem 5.3. Let us consider a B-space such that dim L(θ) = 1 and the basis for L(θ)
is a unit vector field. In order that such a space be weakly symmetric, it is necessary and
sufficient that the Ricci tensor and the basis vector θ satisfy certain conditions. This weak
symmetry is of the form (5.3).

Theorem 5.4. Let us consider a B-space characterized by dim  L(θ) = 2. In order that
this B-space be weakly symmetric, it is necessary and sufficient that the conditions

  *

  −

~

~ ~

~

~~

~
~
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∇rθh =  ar  θh + br  θh + Ch θr
and

∇r  θh = er   θh + fr  θh + Chθr     hold

where θi is a basis vector and  ar, br, cr, er, fr  are vectors.
In 1994 Chaki [29] studied generalized pseudo symmetric manifolds defined by (6)

which is similar to the weakly symmetric manifold defined by Tamassy and Binh.
In his paper [29] Chaki obtained the following results which can be stated as follows :
Theorem 5.5. An Einstein G(PS)n satisfying the condition

(2n + 1)A(X) + B(X) + C(X) + D(X) ≠ 0 (i)

is of zero scalar curvature. Also a G(PS)n satisfying the condition (i) can not be of
constant curvature.

Since  a 3-dimensional Einstein manifol is of constant curvature [40], we can state the
following corollary of Theorem 5.5.

Corollary. An Einstein G(PS)n satisfying the condition 7A(X) + B(X) + C(X) + D(X) ≠ 0
does not exist.

In the same paper Chaki studied conformally flat G(PS)n and obtained a theorem.

6. (WS)N ADMITTING CERTAIN VECTOR FIELDS

A vector field V is said to be concurrent [45] if

∇XV = pX (6.1)
where p is a non-zero constant.

If p = 0, the vector field reduces to a parallel vector field.
A vector field V is said to be recurrent [45] if

∇XV = λ(X)V (6.2)
where λ is a non-zero 1-form.

Considering parallel vector field in a G(PS)n Chaki [29] obtained the following:
Theorem 6.1. If a G(PS)n admits a parallel vector field which is not orthogonal to the

vector field ρ defined by g(X, ρ) = A(X), then the manifold can not be conformally flat.
We have considered concurrent and recurrent vector fields in a (WS)n and obtained

the  following:
Theorem 6.2. [38] If a (WS)n admits a concurrent vector field V given by (6.1), then

V is not orthogonal to each of the vector fields corresponding to the associated 1-forms of
a (WS)n.

If p is zero in (6.1), then the vector field reduces to a parallel vector field. Hence from
Theorem 6.2 we can state the following:

Corollary. If a (WS)n (n>2) admits a parallel vector field V, then V is orthogonal to
each of the associated vector fields corresponding to the associated 1-forms of a (WS)n.

Theorem 6.3.  If a (WS)n admits a non-null recurrent vector field defined by (6.2),
then the 1-form λ is closed and V is orthogonal to each of the associated vectors fields
corresponding to the associated 1-form.

In [41] De and sengupta studied weakly symmetric manifold admitting a type of semi-
symmetric metric connection ∇ whose torsion tensor is given by

− −   − −  −    −

− −   −

  −

  ~
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T(X,Y) = D(Y)X-D(X)Y

and whose curvature tensor R and torsion tensor T satisfies the conditions

R(X,Y)Z = 0
and

(∇XT)(Y, Z) = D(X)T(Y, Z)

respectively. It is proved that such a (WS)n reduces to a particular kind of a (WRS)n with
non-zero and non-constant scalar curvature. It is also shown that if a (WS)n admits a type of
semi-symmetric metric connection mentioned above, then the manifold is a subprojective
manifold in the sense of Kagan.

7. SUBMANIFOLDS OF A (WS)N

Let (M,g) be an n-dimensional Riemannian manifold covered by a system of coordinate
neighbourhoods (U,yα).  Let (M,g) be an m-dimensional (n<m) submanifold of (M,g),
defined in a local coordinate system by parametric equations yα = yα (xI), where g is the
induced metric. Here and in the sequel, Greek indices take the values 1, 2, ..., m and the
Latin indices the values 1, 2, ..., n.

Let NP (P,Q = n + 1, ..., m)  be unit mutually orthogonal normals to (M,g). The second
fundamental tensor Hjip for Np

α is given by
Hjip = Hji

αNpα,      Hji
α = ∇jBi

α,
where Bi

α = ∂yα/∂xI  and  ∇j denotes covariant differential with respect to the metric g of
(M,g). Let (M,g) be a totally umbilical submanifold. Then Hij

α  = gijHα holds where Hα is
the mean curvature vector. The mean curvature H of (M,g) is defined by

H2 = |Hα Hα |.

In [42] M. Prvanovic studied totally umbilical submanifold of a (WS)n and also she
obtained some Theorems as a particular case of a (WS)n. As a particular case of a weakly
symmetric manifold we obtain a pseudo symmetric manifold in the sense of Chaki or a
generalized recurrent manifold named by Prvanovic [15]. In [17] Ewert-Krzemieniewski
studied totally umbilical submanifold  of a pseudo symmetric manifold.

In 2002 [43] F. Ozen and S. Altay studied totally umbilical hypersurfaces of a weakly
symmetric Riemannian manifold and obtained the following

Theorem 7.1. Let (Mn,g) be a totally umbilical hypersurface of a weakly symmetric
space. If (Mn,g) is weakly symmetric, then it is also pseudo symmetric or totally geodesic
hypersurface.

Theorem 7.2. Let (Mn,g) be a totally umbilical hypersurface of a weakly Ricci
symmetric space. (Mn,g) is weakly symmetric  if and only if the mean curvature vanishes.

Theorem 7.3. Let (Mn,g) be a totally umbilical hypersurface of a pseudo symmetric
space. If (Mn,g) is a pseudo symmetric space, then (Mn,g) is totally geodesic or the
associated vector satisfies the condition

H,k – Ak H = o  for all k.

  ~

  ~

  ~   ~

  ~   ~
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8. SOME RESULTS ON WEAKLY RICCI SYMMETRIC MANIFOLD

Weakly Ricci symmetric manifold is defined by (5). A weakly Ricci symmetric
manifold is denoted by (WRS)n. Generalized pseudo Ricci symmetric manifold is same
as (WRS)n which is denoted by G(WRS)n and studied by Chaki and Koley [30] . De and
De [44] studied conformally flat G(PRS)n and De and Ghosh [34] studied conformally
flat (WRS)n. Considering conformally flat (WRS)n we obtain the following results.

Theorem 8.1. [34] In a (WRS)n with δ(X) = B(X)-D(X) ≠ 0, the scalar curvature can
not be zero and Ricci tensor will be of the form S(X,Y) = rT(X)T(Y) where
T(X) = δ(X)/√{δ(ν)} and g(X,ρ) = T(X),  ρ is a unit vector,  g(X, ν) = δ(X).

Theorem 8.2.  [44] In a conformally flat (WRS)n (n>3) with δ≠0, the vector field ρ
defined by g(X, ρ) = T(X)  is a proper concircular vector field [45].

It is known [46] that if a conformally flat (Mn, g) (n>3) admits a proper concircular
vector field, then the manifold is a subprojective manifold in the sense of Kagan. Since a
conformally flat (WRS)n with δ≠0  admits a proper concircular vector field, namely the
vector field ρ, we obtain the following :

Theorem 8.3. [44] A conformally flat (WRS)n (n>3) with δ≠0 is a subprojective manifold
in the sense of Kagan.

K. Yano [47] proved that in order that a Riemannian space admits a concircular vector
field,  it  is necessary and sufficient that there exists a coordinate system with respect to
which the fundamental quadratic differential form may be written in the form

ds2  = (dx1)2 + eqgαβdxαdxβ

where gαβ = gαβ(xγ) are the function of xγ only (α, β, γ, δ  = 2, 3, ..., n) and q = q(x1)≠
constant is a function of x1 only. Thus if a (WRS)n is conformally flat i.e.,

(∇XS)(Y, Z)-(∇YS)(X, Z) = 1/{2(n-1)}[dr (X)g(Y, Z)-dr (Y)g(X, Z)],

it is a warped product IXe^qM, where (M,g) is an (n-1)-dimensional Riemannian
manifold. Using Gebarawski's result [48] we obtain the following :

Theorem 8.4.  [34] A conformally flat (WRS)n  (n>3) with δ≠0 can be expressed as a
product  IXe^qM where M is an Einstein manifold.

Theorem 8.5. [34] A conformally flat (WRS)n  (n>3) with δ≠0 is a manifold of quasi-
constant curvature [49].

If we consider a (WRS)n space-time manifold i.e., a 4-dimensional Lorentzian
manifold, then we prove the following:

Theorem 8.6. [34] A conformally flat (WRS)n space-time is the Robertson-Walker
space-time [50].

Next we mention a theorem concerning special conformally flat (WRS)n (n>3). The
notion of a special conformally flat manifold which generalizes the notion of
subprojective manifold was introduced by Chen and Yano [51]. According to them a
conformally flat manifold is said to be a special conformally flat manifold if the tensor H
of type (0,2) defined by

H(X,Y) =  - 1/(n-2)S(X,Y) + r/{2(n-1)(n-2)}g(X,Y),

is expressible in form
H(X,Y) =  - (α2/2)g(X,Y) + β(Xα)(Yα),

  *   *

  *   *   *

  *   *
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where α and β are two scalars such that α is positive.
Theorem 8.7. [44] A conformally flat (WRS)n is a special conformally flat manifold.
It is known from a  theorem of Chen's and Yano's paper that every simply connected

special corformally flat manifold can be isometrically immersed in a Euclidean space
En + 1 as a hypersurface.

Hence from the above theorem we obtain
Theorem 8.8. [44] Every simply connected conformally flat (WRS)n (n>3) can be

isometrically immersed in an Euclidean space En + 1 as a hypersuface.

9. WEAKLY CONFORMALLY SYMMETRIC MANIFOLD

In 1988 [13] Prvanović introduce the notion of conformally quasi-recurrent manifold.
A non-flat Riemannian manifold is called conformally quasi-recurrent if the

conformal curvature tensor C of type (0,4) satisfies the condition

(∇UC)(X,Y,Z,V) = 2A(U)C(X,Y,Z,V) + A(X)C(U,Y,Z,V) + A(Y)C(X,U,Z,V) (9.1)
+ A(Z)C(X,Y,U,V) + A(V)C(X,Y,Z,U)

where A is a non-zero 1-form. If A = 0, the manifold reduces to a conformally symmetric
manifold. De and Biswas [10] called such a manifold a pseudo conformally symmetric
manifold.

She obtained many interesting results on conformally quasi-recurrent manifold which
are stated below.

Theorem 9.1.   Any conformally quasi-recurrent manifold satisfies

(∇Zπ)(X,Y)-(∇Yπ)(X,Z) = 0

where π(X,Y) = S(X,Y)-r⋅g(X,Y)/{2(n-1)}.
Theorem 9.2.  A conformally quasi-recurrent manifold in which the 1-form A is

closed, can always be locally conformally related to a conformally symmetric manifold
and converse is also true.

Some other results have also been obtained in the same paper [13].
K. Buchner and W. Roter [52] also studied conformally quasi-recurrent manifold.
In [53] De and Mazumder studied proper conformal motion in a pseudo conformally

symmetric manifold.
A Riemannian manifold (whose metric need not be positive definite) is said to admit

an infiniesimal conformal motion if there exists a vector field ξ such that

(L g)(X, Y) = 2σg(X, Y),
   ξ

where L denotes the Lie derivation with respect to ξ and σ is a scalar function. For a proper
conformal motion σ is non-constant. If σ is constant, the motion is called homothetic.

De and Mazumder [53] obtained the following:
Theorem 9.3. If a pseudo conformally symmetric manifold admits a proper conformal

motion with respect to a scalar field σ, then the manifold is either conformlly flat or the
vector field corresponding to ∇Xσ is null.

Theorem 9.4.  If a pseudo conformally symmetric space-time (PRS)4 admit a proper
conformal motion, then (PRS)4 is either of type 0 or N. In case the manifold is of type N
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and  the Einstein tensor is invarient under the conformal vector field, (PCS)4 represents
plane-fronted gravitational waves with parallel rays.

In 1997 De and De [54] introduced the notion of generalized pseudo conformally
symmetric manifold which generalizes the notion of pseudo conformally symmetric
manifold or conformally quasi-recurrent manifold. On the otherhand we have mentioned
earlier that generalized pseudo conformally symmetric manifold and weakly conformally
symmetric manifold are the same notion. In [54] De and De obtained some results which
generalized the results of Prvanović [14].

A Riemannian or pseudo-Riemannian manifold is said to be of harmonic conformal
curvature [55] if n≥4 and the condition (div C)(X,Y)Z = 0 holds. We obtained the following:
[54].

Theorem 9.5. Every generalized pseudo conformally symmetric manifold G(PCS)n
(n>3) is of harmonic conformal curvature if and only if A(C(X,Y)Z) = 0 holds.

Theorem 9.6.  In a G(PCS)n with A(C(X,Y)Z) = 0, the scalar curvature is constant if
and only if the Ricci tensor is a Codazzi tensor.

Theorem 9.7.  A G(PCS)n  (n>3) satisfies

(∇XT)(Y,Z) = (∇YT)(X,Z)        if     A(C(X,Y)Z) = 0

where T(X,Y) = S(X,Y) − r⋅g(X,Y) /{2(n−1)}.
Also in the same paper we have studied conformal tranformations of G(PCS)n and we

proved the following:
Theorem 9.8. If a G(PCS)n is tranformed into a G(PCS)n with the same associated 1-

form by a conformal tranformation, g = ρ2g  then either the manifold is conformally flat
or the tranformation is homothetic ( ρ  = constant ) .

Theorem 9.9. In order that a G(PCS)n which is not conformally flat is tranformed into
another G(PCS)n with the same associated 1-form by a conformal transformation g = ρ2 g,
it is necessary and sufficient that ρ  is constant.

Recently in a paper [56] we have studied Ricci-recurrent weakly conformally
symmetric manifold (WCS)n. An n-dimensional Riemannian manifold is said to be Ricci-
recurrent if the Ricci tensor is non-zero and satisfies the condition

 (∇ZS)(X,Y) = α(Z)S(X,Y)
where α is a non-zero 1-form.

We prove that
Theorem 9.10. In a weakly conformally symmetric Ricci-recurrent manifold with

non-zero scalar curvature, the 1-form α is equal to  A + B where A and B are associated
1-forms of (WCS)n.

Finally we prove that a (WCS)n satisfying second Bianchi indentity can be endowed
with a uniquely determined semi-symmetric metric connection with respect to which the
conformal curvature tensor is a (WCS)n.

10. WEAKLY PROJECTIVE SYMMETRIC MANIFOLD

A Riemannian manifold (M, g) is called weakly projective symmetric [26] if there
exist 1-form A, B, C, D and a vector field F such that

* −

* −



816 U. C. DE

(∇XW)(Y,Z)V = A(X)W(Y,Z)V + B(Y)W(X,Z)V + C(Z)W(Y,X)V
 + D(V)W(Y,Z)X + g(W(Y,Z)V,X)F,

where W is the projective curvature tensor of (M, g). Tamassy and Binh [26] obtained
necessary and sufficient conditions for a weakly symmetric manifold to be a weakly
projective symmetric or conversly, with the same associated 1-form.

They obtained the following theorems:
Theorem 10.1.  If an (M, g) (n≠4) is weakly symmetric and also weakly projective

symmetric with the same associated 1-forms A, B, C, D and associated vector field F
(where the vanishing of F is also allowed), then

a) BS = CS,    b) S,    c) CS,    d) DS are totally symmetric and
 [A(X) + C(X) + D(X)]S(Z,V) = (∇XS)(Z,V)  holds where S is the Ricci tensor.
Theorem 10.2. A Riemannian manifold (M,g)  (n≥4) is weakly symmetric and also

weakly projective symmetric with the same associated 1-forms A, B, C, D and associated
vector field F≠0 iff the Ricci tensor S vanishes.

From theorem 10.2 the theorem of Chaki and Saha  [7] follows.
De and De [57] studied generalized pseudo projective symmetric manifold G(PWS)n.

A weakly projective symmetric manifold is little weaker than a G(PWS)n. De and De [57]
obtained the following theorems.

Theorem 10.3. A G(PWS)n (n>2) is of zero scalar curvature if and only if
W(X,Y)Q = R(X,Y)Q holds provided T≠0 where T(X) = A(X) + B(X) and g(Q,X) = T(X).

Theorem 10.4.  In a G(PWS)n satisfying A(W(X,Y)Z) = 0, the Ricci tensor S is of
Codazzi type i.e., the Ricci tensor satisfies (∇XS)(Y,Z) = (∇YS)(X,Z).

Theorem 10.5.  If a G(PWS)n satisfies A(W(X,Y)Z) = 0, then either the manifold is
of constant curvature or the associated vector ρ defined by g(X, ρ) = A(X) is orthogonal
to the vector ρ defined by g(X,ρ) = G(X)  where G(X) = 2A(X)-B(X)-C(X).

Theorem 10.6.  If the vector field ρ defined by g(X,ρ) = A(X) is a parallel vector
field in an Einstein G(PWS)n, then G(PWS)n reduces to a G(PS)n provided the vector
fields corresponding to the 1-form A and B are not codirectional.

11. CONTACT STRUCTURE OF (WS)N AND (WRS)N

Tamassy and Binh [27] in their paper studied weakly symmetric and weakly Ricci
symmetric  Sasakian manifold.They proved the following

Theorem 11.1. There exist no weakly symmetric Sasakian manifold Mn (φ,η,ξ,g)
(n>2)  if A + B + D is not everywhere zero.

Theorem 11.2. There exists no weakly Ricci symmetric manifold Mn (φ,η,ξ,g) (n>2)
if A + B + C is not everywhere zero.

It is known that every Sasakian manifold is K-contact, but the converse, is not true in
general. However a 3-dimensional K-contact manifold is Sasakian. De, Binh and Shaikh
[58] studied weakly symmetric and weakly Ricci symmetric K-contact manifold to
generalize the result of Tamassy and Binh [27]. Also De and Ghosh [59] studied
generalized pseudo Ricci symmetric Sasakian manifold.

~ ~
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12. KÄHLER STRUCTURE OF (WS)N AND (WRS)N

A Kähler manifold is an even-dimensional manifold M2n with a complex structure  J
and a positive definite metric g satisfies the following condition

J2 = -I    g(X,Y) = g(X,Y),  X = JX and    ∇J = 0,

where ∇ means the covariant derivative according to the Levi-Civita connection.
Tamassy, De and Binh [60] studied weakly symmetric and weakly Ricci symmetric

Kähler manifolds.
The following theorems are obtained.
Theorem 12.1.  In a weakly symmetric Kähler manifold,
(a) if the scalar curvature is a non-zero constant, then the sum of the associated 1-

forms is zero.
(b) α, Jα, β, Jβ, γ, Jγ are the eigen vector of the Ricci tensor S with the same eigen

value (r/2) where α, β, γ are the vector fields corresponding to the associated 1-form A, B
and D respectively.

Theorem 12.2.  Let M2n be a weakly symmetric Kähler manifold of dimension 6 and
let  α, Jα, β, Jβ, γ, Jγ  be linearly independent. Then the manifold is Ricci flat.

Concerning the weakly Ricci symmetric Kähler manifold we obtained the following :
Theorem 12.3.  In a weakly Ricci symmetric  Kähler manifold with non-zero

constant scalar curvature, the 1-forms of (WRS)n are all equal.

13. APPLICATIONS

In Theorem 8.6. we mention that a conformally flat weakly Ricci symmetric space-
time manifold is the Robertson-Walker space-time.

Also in Theorem 9.4. we see that if a 4-dimensional pseudo conformally Symmetric
space (PRS)n admit a proper conformal motion then (PRS)n is either of type 0 or N. In
case the manifold is  of type N and the Einstein tensor is invariant under the conformal
vector field, (PCS)n represents plane fronted gravitational waves.
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O SLABOSIMETRIČNIM STRUKTURAMA
RIEMANIAN MNOGOSTRUKOSTI

U.C. De

U ovom radu je dat pregled o slabosimetričnim strukturama Riemanian mnogostrukosti.
Studirane su slabo simetrične i slabo projektivne simetrične Riemannian mnogostrukosti koje su
započei Tamassy i Binh. Kasnije jedan broj autora je studirao slabosimetričnu  Riemanian
mnogostrukost i nalogne strukture, kao i slabe Riccijeve simetrčne, slabo projektivne simetrične i
slabo konformno simetrične Riemannian mnogostrukosti. Ovde, u vom raduje prikazan pregled
rezultata o slabosimetričnim strukturama na Riemannian mnogostrukosti i neke primene u teoriji
relativnosti.

Ključne reči: Psoudo simetrična mnogostrukost, slabosimetrična mnogostrukost, slabo Ricci-jeva
simetrična mnogostrukost, slabo konformna simetrična mnogostrukost, slabo
projektivna simetrična mnogostrukost.


