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Abstract. The problem of the small-scale yielding (SSY) plane-strain asymptotic fields for
the interfacial free-edge joint singularity is examined in detail and comparisons are made
with the interfacial crack tip. The geometries are idealised as isotropic elasto-plastic
materials with Ramberg-Osgood power-law hardening properties bonded to a rigid
elastic substrate. A fourth-order Runge-Kutta numerical method provides solutions to
fundamental equations of equilibrium and compatibility. Asymptotic fields for stress and
displacement are developed for a range of hardening parameters and comparisons made
between the joint and crack geometries. It is shown that there is some significant
similarity between the asymptotic fields particularly for perfectly plastic behaviour.

INTRODUCTION

Interface-controlled fracture is one of the most important microscopic events leading
to ultimate macroscopic rupture in many polycrystalline, composite, and ceramic
materials. A fracture mechanics' description of the critical state prior to separation using
continuum-based mechanics usually involves the elastic traction-free solution of
Williams [1] for the interface crack characterised by the complex stress intensity factor
K = K1 + iK2. This solution models the elastic stress singularity at the interfacial crack tip
of the form Kr-0.5+iε (where ε is a bimaterial parameter), and thus produces unbounded
tractions and crack tip stress and strains. It is of limited use for describing materials that
yield and undergo inelastic deformation at high strains. The elasto-plastic interfacial
crack problem has received considerable attention in the last decade enabling a thorough
understanding to be developed. Numerical solutions involving elasto-plastic behaviour at
a traction-free crack tip for a Ramberg-Osgood hardening material have been developed
by Shih and Asaro, and Zywicz and Parks [2-4] amongst others.
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Failure of interfacial systems frequently initiates, however, at the free-edge joint
between two materials, where a stress singularity also exists, leading to the development
and propagation of an interface crack. The analysis of such interfacial free-edge stress
fields is just as important, therefore, to our understanding of crack initiation and growth
though in comparison to the interface crack it has received far less attention. Further, no
direct link has been established between the asymptotic singular fields for the interfacial
free-edge joint and the interfacial crack-tip to enable the process of crack initiation at the
joint to be completely understood. Part of the reason for this is thought to be that a
description of the process leading to crack initiation assuming purely elastic behaviour is
complicated by the difference in stress singularity orders and fields. Indeed, it has been
shown by Klingbeil and Beuth [5] that conflicting solutions are obtained if designing to
prevent debond of the interfacial free-edge joint and/or to prevent propagation of an
interfacial crack. Furthermore, the same limitations of the elastic solution apply to the
interfacial free-edge joint, i.e. the stress and strains are unbounded. Relatively little effort
has been paid to the elasto-plastic behaviour of the free-edge singularity except for the
determination of plastic zone size and shape [6,7]. There appears to have been no attempt
made to understand the asymptotic elasto-plastic behaviour of the interfacial free-edge
joint and then to compare it with the interfacial crack.

In this paper, the asymptotic structure of the elasto-plastic stress field at the interfacial
free-edge joint is considered for a quarter of a Ramberg-Osgood hardening material and a
rigid elastic material bonded perfectly to form a half plane. The asymptotic structure of the
stress and displacement field developed at the joint are obtained using an approach similar
to that of Sharma and Aravas [8] and are compared with those for the interface crack. A
highly focused finite element (FE) analysis provides some corroborative solutions. It is not
the intention of this paper to establish a direct link between the interfacial free-edge joint
and crack-tip. However, some remarkable similarities between the structures of the elasto-
plastic asymptotic stress fields between the interfacial joint and crack are presented and
should enable a description of the process leading to crack initiation and growth to be much
more accommodating than with purely elastic behaviour.

FORMULATION OF THE PROBLEM

A thorough analysis of the plane-strain interfacial free-edge joint (Fig. 1a) assuming
SSY conditions is presented and solutions obtained are subsequently compared with those
for the interfacial crack-tip (Fig. 1b). The constitutive behaviour of the homogeneous
isotropic elasto-plastic material is characterised by the J2 deformation theory for a
Ramberg-Osgood uniaxial stress-strain behaviour, i.e.:
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where εij is the infinitesimal strain tensor, σo is the yield stress, εo = σo / E, and the
deviatoric stress is given by:

ijkkijijs δσ−σ= 3
1 (2)

and the Mises equivalent stress is defined as:
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Fig. 1. Schematic (a) interfacial free-edge joint and (b) interfacial crack-tip geometries
including polar and Cartesian co-ordinate schemes.

Also, n is the power-law hardening exponent (1 ≤ n ≤ ∞), E is the Young's moduli, δij
is the Kronecker delta, and α is a material constant. If n = 1 then the behaviour is purely
elastic.

A polar (cylindrical) co-ordinate system is adopted and the equilibrium equations for
infinitesimal (linear) strain theory can be expressed as:
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The strain-displacement equations are written as:
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where u = (ur,uθ) is the displacement vector. Out-of-plane stresses and strains are
assumed to vanish. Finally, the strain-compatibility equation is given by:
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For the problem of a homogeneous isotropic elasto-plastic material bonded perfectly
to a rigid base, the following boundary conditions apply:

0)2/,( =πθθ rσ , 0)2/,( =πθ rσr (10)

0)0,( =rur , 0)0,( =θ ru (11)

for the interfacial free-edge joint, and:

0),( =πσθθ r , 0),( =πσ θ rr (12)

0)0,( =rur , 0)0,( =θ ru (13)

for the interfacial crack tip, where σ and u is the stress tensor and displacement vector
respectively, and (r,θ) is the polar co-ordinate system used (Fig. 1).

Selection of the upper material for this investigation is a comparatively arbitrary
choice though that used throughout has elastic properties typical of modern adhesives.
That its singularity order under elastic conditions is approximately half that of the
interfacial crack means the re is sufficient difference to make for an interesting
comparison. The key parameter in the investigation, as with those studies on the
interfacial crack tip, is the hardening exponents and values ∞=  and 50, 10, 5, ,1.1n
(elastic-perfectly-plastic) are considered. The value n = 1.1 was chosen as it is just above
unity and, therefore, just into the elasto-plastic regime.

BACKGROUND KNOWLEDGE

A singularity at the interfacial free-edge (Figure 1a) is predicted by Bogy [9] to be of
order depending on the elastic constants of the materials. In this geometry, the singularity
field is of the form:

),(),( 1 θλ=θσ −λ
ijij fHrr (14)

where H is its intensity, λ-1 is the singularity order, and fij are known non-dimensional
functions of (λ,θ). The intensity H depends on the far-field geometry and loading. The
order of the singularity λ is dependent on two material mismatch parameters first used by
Dunders [10] given by:
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where κj = 3 − 4νj for plane strain, κj = (3 − νj)/(1 + νj) for plane stress, and µj and νj ,
(j = 1,2) are the shear modulus and Poisson's ratios of the constituent materials. Values of
λ have been calculated by several investigators for different material combinations and
geometries, e.g. Bogy [9], and values of H have been investigated for different
geometries by Akinsaya [11]. It has also been shown by Akinsaya and Fleck [12] that an
interface crack embedded in a free-edge singularity-dominated zone has its own field
amplified by the H-field.

For a rigid elastic material 2, i.e. µ2 = ∞, equation (15) becomes:
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It is observed that the material mismatch parameters are no longer dependent on the
shear moduli; the second depends only on the condition of plane strain (or plane stress).
The chosen material for the upper half of the joint in this investigation has υ1 = 0.39. Its
singularity order under purely elastic conditions is found to be λ = 0.72 using the analysis
of Bogy [9], i.e. the singular stresses vary according to σ → σ (r−0.28). Put another way,
the singularity order used for the joint is approximately half the magnitude expected for
the crack.

In general, the interface crack between two isotropic materials suffers a singularity
stress field characterised by the complex stress intensity factor, K = K1 + iK2, and is of the
form:

),(),( i5.0 θε=θσ ε+−
ijij gKrr (17)

where ε is the oscillatory index given by:
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and gij are known non-dimensional functions of (ε,θ).
The singularity order of the interfacial crack tip under elastic conditions is always λ=0.5
in comparison to the free-edge joint that varies according to the elastic properties of the
two materials. However, the mode mix of loading is complicated by the oscillation of the
stress components due to the iε term in (17).

Using a J-integral argument Rice and Rosengren [13], and Hutchinson [14] have
shown that crack problems under SSY conditions result in a 1/r singularity in the strain-
energy density. That is, the product of stress and strain is given by:

0 as    offunction  some
,, →θ→εσ r

rjiji (19)

Then the strain singularity for a power law hardening material of index n is given by:
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and the stresses have a singularity order given by:
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noting that the singularity order s is given by –1/(1+n) [13,14]. In equations (20) and (21)
E(θ) and Σ(θ) are functions of θ. The same states of stress and strain for interfacial cracks
under SSY conditions have been confirmed [8]. The same investigators have shown that
asymptotic solutions for E(θ) and Σ(θ) correspond to a dominating tensile mode scaled by
the multiplicative constant, J, even for hardening exponents n slightly greater than unity. It
does not appear that asymptotic elasto-plastic solutions exist for an arbitrary mode mix
ratio, )0()0( / θθθ σσr , at the interface [8,15]. Consequently, if the leading-order mode-mix
parameter )0(

pM  is defined as [16]:
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then typically )0(
pM  has values of unity. The authors [17] have obtained whole-field

experimental data using digital photoelasticity to verify the existence of the dominating
tensile mode at interfacial crack tips.

In comparison to the interface crack, the behaviour of the interfacial free-edge joint
under elasto-plastic conditions has not been considered in full. The only known attempt
to determine singularity orders for materials with hardening is due to Rudge and Tiernan
[18]. Several aspects of the elasto-plastic behaviour of the interfacial free-edge joint are
unclear and the authors are not aware of any published solutions for the resulting
asymptotic distributions of stress and displacement. Consequently, this study aims to
redress the balance with a view to considering in the future the mechanisms involved in
the development of a crack from the interface joint.

ASYMPTOTIC SOLUTIONS FOR THE INTERFACIAL FREE-EDGE JOINT

The fundamental questions to be posed are: "what is the asymptotic structure of the
interfacial free-edge joint under elasto-plastic conditions?" and "how does it compare
with the interfacial crack-tip?". To arrive at some answers the numerical results of an
asymptotic analysis for the interfacial free-edge joint are presented and compared with
those of the interfacial crack tip in the next section. Numerical calculations assume the
upper domain is a Ramberg-Osgood hardening material that is perfectly bonded to a rigid
elastic substrate. Field solutions to the plane-strain interfacial free-edge joint problem
were obtained using the asymptotic approach of Sharma and Aravas [8] and by FE
analysis for hardening cases n = 1.1,5,10,50, and ∞.

According to Sharma and Aravas [19] the leading order problem that defines the
asymptotic behaviour in terms of stress and displacement fields satisfying (4)-(9) consists
of five non-linear ordinary differential equations:
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A fourth-order Runge-Kutta solution to the equations in (23) was obtained for different
values of the hardening exponent n using the proprietary software Mathcad (v.2000),
distributed by Adept Scientific Ltd.). An iteration scheme was used to determine the
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solution s to the non-linear eigenvalue problem and the subsequent distributions for the
stresses and displacements that satisfy (23) above, and the conditions (10) and (11).

These asymptotic solutions were verified by a FE analysis performed using the
software Lusas (v13.2, distributed by FEA Ltd., Kingston, UK). Highly-focused, refined
meshes for the interfacial free-edge joint were prepared using four-noded linear elements
until satisfactory convergent results were obtained. Preliminary trials to perfect the mesh
were performed using the interface crack tip geometry that was compared with known
solutions. The eventual FE mesh used for the interface joint problem consisted of a
quarter-circle domain with boundary displacements applied calculated using the
asymptotic elastic solution to the singularity problem. Logarithmic seeding was used in
the radial direction consisting of 10 nodes per decibel for −5 ≤ log r/rp ≤ 1. In the
circumferential direction, the region was separated into 6 elements of uniform spacing
between 0° and 9°, and 28 elements of uniform spacing between 9° and 90°. The
displacements on the 0° radial were zeroed to simulate bonding to a rigid substrate and
traction-free boundary conditions were assumed on the 90° radial. The authors would
have preferred to use nine-noded Lagrangian elements and the B-bar approach to elasto-
plastic analysis that seems to have been accepted in the literature as conventional.

Figures 2 and 3 show the angular variation of the polar components of stress and
displacement, respectively, for the four cases of hardening n=1.1,5,10, and 50. Nodal
values of the polar components of stress and displacement from the FE analysis are
plotted as white circles for the radius log (r/rp) = −2 . The results are normalised so that
the maximum value of the equivalent stress σe in the angular variation is unity, i.e.:

1]~~5.1[ 2/1
max

)0()0( =ijij ss (24)

The fourth-order Runge-Kutta solution to the angular variations from equation (23) has
been superimposed onto the FE results to enable them to be validated. In all cases of the
polar components of stress and displacement, the agreement is excellent between the
asymptotic solution and the FE results.

COMPARISONS OF INTERFACIAL FREE-EDGE JOINT AND CRACK-TIP ASYMPTOTIC FIELDS

Firstly, the singularity orders for the interfacial free-edge joint obtained by the
asymptotic analysis are shown plotted against hardening exponent n in the graph of
Figure 4.a as white squares. The thick black line represents the solution for the crack
given by s = −1 / (1 + n). It is seen that for a given n the singularity order for the joint is
of slightly smaller magnitude that for the crack. This confirms that the singularity order
for the interface joint itself varies with n as in the case of the crack. Figure 4(b) shows
values for the mode mix parameter Mp calculated from solutions from the asymptotic
analysis using (22). These are denoted by the white squares in Figure 4.b. The solution
for the crack has been superimposed using values from the study by Sharma and Aravas
[8]. Attempts were made to obtain solutions for a range of mode mix parameters. As with
the case for the crack [8] there only appears to be a narrow band of mode-mix ratio
solutions available for the interfacial joint even for n slightly greater than one. However,
in general, the mode-mix parameters for the joint involve more "Mode II" than for the
crack that is predominantly "Mode I".
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Fig. 2. Angular variation of the asymptotic normalised plane-strain polar stress
components for the interfacial free-edge joint (lines=asymptotic, markers=FE).

Fig. 3. Angular variation of the asymptotic normalised plane-strain polar displacement
components for the interfacial free-edge joint (lines=asymptotic, markers=FE).
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Fig. 4. Comparison of (a) stress exponent s and (b) mode mix Mp with hardening
exponent n for the interfacial crack-tip and free-edge joint.

Further comparisons between solutions for the interfacial free-edge joint and the
crack-tip are made by plotting results of the asymptotic analysis obtained for both
geometries for n = 1.1,5,10, and 50. The solutions obtained for the crack corroborate
those existing in the literature. Asymptotic behaviour for both geometries is compared in
Figures 5 and 6 through the angular distribution for the polar stress components and
displacements respectively. The results are again normalised so that the maximum value
of the equivalent stress in the angular variation is unity. It is interesting to observe that
the fields are in closer agreement than one might imagine. They appear to belong to the
same 'family' of curves if one ignores for the moment that the crack involves some higher
values for tangential components of stress and displacement (Figures 5.b and 6.b). The
only exception appears to be in the case of the radial stress components in Figure 5.a.

Fig. 5. Comparison of the asymptotic normalised plane-strain polar stress components
and equivalent stress for the interfacial free-edge and crack-tip for hardening
n=1.1,5,10, and 50.
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Fig. 6. Comparison of the asymptotic normalised plane-strain polar displacement components
for the interfacial free-edge and crack-tip for hardening n=1.1,5,10, and 50.

A more important comparison arises when plotting the angular distribution of stresses
for the limiting case n = ∞, i.e. an elastic-perfectly-plastic material. It was considered here
that there may be some similarity between the inelastic behaviour at the interfacial free-
edge joint and the interfacial crack if the latter case includes the elastic sector predicted by
Zywicz and Parks [4] between 900 ≤ θ ≤ 1800, i.e. both are inelastic between 00 ≤ θ ≤ 900.
The reason for this is that the inelastic behaviour is confined to the same quarter in both
cases. Solutions for both geometries were obtained by performing the asymptotic analysis
as used elsewhere in the paper. Strictly speaking, the solutions are approximate as a large
but finite value for n has to be input to get a solution and so n ≅ ∞. The results for the polar
components of stress are shown normalised in Figure 7(a). There are already some close
similarities between the two sets of curves, however, a more obvious similarity is then ob-
tained when the deviatoric stresses
are calculated using (2) and plotted
as in Figure 7(b). Here the two sets
of curves cannot be distinguished
for the region 00 ≤ θ ≤ 450. One may
surmise that upon development of
an interfacial crack from an interfa-
cial free-edge joint the asymptotic
deviatoric stress field does not have
to change its distribution in the re-
gion 00 ≤ θ ≤ 450 for an elastic-per-
fectly-plastic material. In other
words, upon attaining yielding stress
levels a 'pseudo' crack-tip already
exist at the interfacial free-edge joint
upon yielding in terms of the devia-
toric stresses field. The authors hope
that this similarity opens avenues to
formulating a direct link between the
two geometries to enable crack ini-
tiation at a free surface in interfacial
material systems to be better under-
stood.

Fig. 7. Comparison of the asymptotic normalised
plane-strain (a) polar and (b) deviatoric stress
components for the interfacial free-edge and
crack-tip under elastic-perfectly-plastic slip
conditions.
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CONCLUSIONS

For an isotropic elasto-plastic material bonded to a rigid substrate the SSY asymptotic
plane-strain behaviour at the interfacial free-edge joint has been identified for several
values of the hardening exponent n. Using an asymptotic analysis the polar components
of stress and displacement have been determined and confirmed by a highly-focused FE
analysis. Similarly, the singularity orders under elasto-plastic behaviour were identified
and shown to be dependent on the hardening exponent n of the material. As in the case
for crack, there only exist asymptotic solutions for a narrow range of mode mixes at the
interfacial free-edge joint under elasto-plastic behaviour.

Comparisons of the asymptotic structure of the stress and displacement fields between
the joint and crack show that they appear to belong to the same family of curves. In
comparing elastic-perfectly–plastic behaviour between the interfacial free-edge joint and
the crack tip, involving an elastic sector between 900 ≤ θ ≤ 1800, it is seen that the
normalised deviatoric stress field is indistinguishable between the two geometries for the
region 00 ≤ θ ≤ 450. Consequently, it would appear that the asymptotic deviatoric stress
field that drives many forms of crack propagation does not need to change structure upon
initiation of an interfacial crack at the free-edge joint.
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SLIČNOSTI IZMEDJU INTERFACIJALNIH POLJA NISKOG
NIVOA POPUSTLJIVOSTI SPOJENIH PREKO SLOBODNIH

IVICA I POLJA SA VRHOM PRSLINE
L. Marsavina, A. D. Nurse

Problem dilatacije asimptotskih polja niskog nivoa popustljivosti za interfacijalnu osobenost
spojenosti preko slobodnih ivica proučen je do detalja, i izvršena su poredjenja sa interfacijalnim
vrhom prsline. Geometrije su idealizovane kao izotropski elasto-plastični materijali sa svojstvima
otvrdnjavanja po Ramberg-Ozgudovom zakonu snage koji su vezani za rigidni elastični substrat.
Runge-Kuta numerički metod četvrtog reda daje rešenja za osnovne jednačine ravnoteže i
kompatibilnosti. Asimptotska polja za napon i pomeranje razvijena su za niz parametara
otvrdnjavanja i izvršena poredjenja izmedju geometrija spoja i prslina. Pokazano je da postoji
značajna sličnost izmedju asimptotskih polja, naročito za savršeno plastično ponašanje.


