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Abstract. It is one of the main advantages of engineering fracture mechanics that the
user has not to deal with the local stress- and strain-field in detail. Instead, the local
loading state and fracture behaviour is characterized by overall parameters like J or K
and their critical values. Unfortunately, the transferability of these parameters is
restricted to similar conditions concerning crack-tip constraints. However, to take the
effects of non-equal constraints into account in a fracture assessment procedure, an
elastic-plastic analysis of the crack-tip region has to be performed. This requires a
computational effort which is usually beyond the possibilities within an engineering
analysis. Therefore, simplified procedures are needed. A promising possibility is
suggested in the present paper, where a new constraint parameter Γ is introduced. It
has two main advantages: First, it can be obtained easier than the commonly used Q-
parameter, and second, it is related to the fracture toughness parameters by closed-
form equations.

1. INTRODUCTION

A sharp notch or a crack in a structural component cause a stress-concentrations that
forms a local plastic zone. In the case of small-scale yielding (SSY) it is embedded in an
elastic surrounding, in full scale yielding (FSY) in an inhomogeneous plastic strain field.
In both cases, the plastic strains in the vicinity of the crack-tip are restrained, creating a
triaxial stress-state to occur. This effect is called crack-tip constraints (CTC). Its magni-
tude depends on the crack length, the loading type and the component size and geometry.
In elastic-plastic materials, the CTC result in local stresses that exceed the uniaxial yield
stress considerably (Fig. 1).

Due to CTC the non-dimensional maximum stress in the vicinity of the crack-tip, γ,
defined as

γ = σy max / Rp (1)
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can be up to 3 for non-hardening and even higher for hardening materials. Through this
stress peak the CTC affect the fracture behaviour of a pre-cracked component signifi-
cantly. The most important effects are:
1. The higher the CTC, the lower the load (in terms of J-integral or KI) required for ini-

tiation of a cleavage fracture.
2. The higher the CTC, the lower the crack-tip opening displacement (CTOD) the crack

opening angle (CTOA), and, thus, the fracture energy.
3. The higher the CTC, the higher the ductile-to-brittle transition temperature (DBTT)

Generally speaking, the higher the CTC, the more "brittle" the failure behaviour of a
pre-cracked structural part. This effect should be taken into account in a failure assessment
analysis. Neglecting it often results in over-conservative failure predictions, since fracture
toughness test specimens are designed such that maximum constraints are present.

Conceptually it is suitable to distinguish between out-of-plane constraints (OPC) and
in-plane constraints (IPC). The importance of the former is known since the early days of
fracture mechanics in the early sixties, when it was found that fracture toughness is sig-
nificantly dependent on the thickness of the test specimen [1, 2]. This finding resulted in
the size requirement of fracture mechanics test specimens. Disregarding a few special
cases of "super-constraints", the highest OPC are those corresponding to plane strain. It is
interesting to note that it took about twenty years longer until the effect of the IPC on
fracture toughness was fully recognized [3-8]. To characterize the IPC several parameters
are suggested in the literature. The best known are the so-called T-stress, the Q-factor and
the m-factor.

The T-stress quantifies the second term of Williams stress field expansion [9, 10],
which - as a homogeneous uniaxial stressfield acting parallel to the crack - obviously
contributes to the triaxiality of the near-tip region, for small scale yielding (SSY).
Moreover - surprising on a first glance - there is experimental and numerical evidence
that T correlates with the constraint effects even in the case of large scale yielding (LSY)
and full scale yielding (FSY) [7, 8, 9]. However, in LSY or FSY, T can only serve as an
"indexing" parameter, not as a "correcting" one [7].

The Q-factor [5] quantifies the difference between the actual local stress at a certain
reference location near the crack tip and the theoretical HRR-stressfield under SSY-con-
ditions. Correspondingly, a detailed local stress analysis by the Finite-Element method
(FEM) is required for its determination. So - since the main benefit of engineering frac-
ture mechanics just is its possibility of predicting the local fracture behavior at a crack tip
without a detailed local stress analysis - the Q-approach is usually not adequate for prac-
tical engineering applications.

The factor m, which appears in the well-known general relation between J and CTOD
δ as

J = m ⋅ Rp ⋅ δ (2)

is known to be constraint-dependent, at least as OPC are concerned. Thus m can serve as
a parameter to characterize constraints, as suggested in [11]. The factor m can be deter-
mined either by a finite-element analysis or experimentally. As a displacement-related
quantity it is easier to be determined than the Q-factor. However, like T, m seems to be
rather an indexing than a correcting parameter.
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In [11] and [12], attempts are made to include constraint effects in engineering failure
assessment procedures. However, relying basically on T and Q, the same drawbacks as
discussed above apply. In the present paper, a different approach for engineering pur-
poses is suggested. As a constraint parameter an estimation of γ, denoted by Γ, is sug-
gested by the author in [13].  The main ideas behind it are outlined in the present paper.
As shown below, Γ is easier to be obtained than Q, and there are analytical relations to
fracture toughness.

2. ESTIMATION OF LOCAL STRESS PEAK

To obtain an approximation of γ defined in (1), the magnitude of the local stress σymax
(see Fig. 1) has to be estimated. For SSY and elastic-perfectly plastic material under
plane strain conditions, it was determined in [15] by slip line theory to be

py R⋅π+⋅=σ )2(5.0max (3)

where Rp denotes the yield stress. Eq. (3) holds for Tresca's yield criterion, whereas for
the von-Mises yield criterion the factor 0.5 has to be replaced by 0.577. By the same
model, the relation between J-integral and CTOD δ was obtained in [15] to be

pR
J⋅

π+
=δ

)2(
4 (4)

From eq. (2), (3) and (4) it follows that

σy max ≅ 2 ⋅ m ⋅ Rp (5)

The adjacent elastic surrounding requires a three-axial stress-state to be capable to
match with these stress. Assuming a plane strain situation, i.e.

0)((1 =σ+σ⋅ν−σ⋅=ε yxzz E
(6)

and a hydrostatic stress state in the x-y-plane, i.e.

σx(x) ≅ σy(x) (7)

the application of Tresca's yield criterion

pzy R<σ−σ (8)
in a formal, over-all sense, leads to

ν−
=σ

21max
p

y
R

 ≅ 2 ⋅ m ⋅ Rp   (for T = 0) (9)

Eq. (9) represents the maximum stress that can act on the boundary of the plastic
zone. For ν = 0.3 its value is quite close to the one given in (3), so with (5) the second
equation in (9) results. It is well known that the assumption (7) is true for the elastic
stressfield in the vicinity of the crack-tip near the x-axis in case of a pure Mode I-loading
and T = 0. If a negative T-stress is present, then (7) has to be replaced by
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σx = σy + T (10)

Repeating the estimation procedure (6) – (9) with (10) instead of (7), one finds instead
of (9)

ν−
⋅ν+

=σ
21max

TRp
y    (for T < 0) (11)

From comparison with (9) one obtains

TRm py ⋅
ν−

ν+⋅⋅≅σ
21

2max    for plane strain, T < 0 (12a)

If T > 0, then σy max given by (11) exceeds the one acting in the slip-line zone as given
by (3), so the latter is decisive. This means that

σy max ≅ 2 ⋅ m ⋅ Rp     for plane strain, T > 0 (12b)

For plane stress, T has no influence on σy max since lateral necking in a strip-yield-
zone occurs, which means that

σy max ≅ Rm     for plane stress (12c)

where Rm denotes the tensile strength.
The above considerations hold for SSY only. Nevertheless, there are reasons to as-

sume that (12a) - (12c) can be extended to estimate the local stress well beyond SSY.
One them is that the dominating term in (12a) and (12b), m, is defined in LSY and FSY
in the same way as in SSY, so consistency between SSY and FSY is expected. Further-
more, the second parameter in (12a), the T-stress, is known to be relevant not only in
SSY, but also in large- and even in full-scale yielding. This is explicable since the same
features of the geometry and the stress-field that cause a high T-stress also tend to cause
high constraints in full plasticity.

3. DEFINITION OF THE CONSTRAINT PARAMETER Γ

We introduce a constraint parameter Γ such that

p

y

R
maxσ

=γ≅Γ (13)

Inspired by (12a) – (12c) and the above discussed extension to LSY, we assume Γ to
be a linear combination of m and T in the following form:

Γ = cm ⋅ m + cβ ⋅ β (14)
where

β = Tmax / Rp (15)

with Tmax being the maximum T-stress at the considered crack, i.e. the T-stress at KI = KIc
in the case of SSY, or at the plastic limit load in the cases of LSY and FSY, respectively.
Based on (12a – 12c), the factors in (14) are expected to be approximately as follows:

for plane strain, T ≤ 0 : cm = 2   cβ = 0.75 (16a)
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for plane stress: cm = σf  / Rp     cβ = 0 (16b)

As mentioned above, Γ is considerably simpler to be determined than Q, since both its
ingredients, T and m, are well known and defined parameters, which can be found in the
literature for several systems, at least as approximations. Actually, determination of m
according to (2) requires a FEM-calculation, too, but being a displacement-related quan-
tity it is easier to be obtained than Q. Unlike Q, it also can be determined experimentally
or - as in the example in section 5 - even analytically as an approximation. Furthermore,
as shown in the next section, it can be related to fracture toughness by simple models.
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d*/δ

x /δ

Fig. 1. Non-dimensional representation of the stress distribution in the vicinity of a crack-tip

ESTIMATION OF CONSTRAINT EFFECTS ON FRACTURE TOUGHNESS

4.1. Cleavage Fracture

The critical J- or CTOD-values at onset of cleavage, denoted as Jc and δc, respec-
tively, are known to be constraint-dependent. In the following, this dependence is esti-
mated analytically.

Taking pattern from [16], the following two criteria are assumed to govern initiation
of unstable cleavage:
i) The maximum stress in the vicinity of the crack tip must exceed the cleavage stress

σc*, i.e.
σy max = γ ⋅ Rp > σc* (17)

ii) The elastic energy Wel  = ∫Uel·dV stored in a critical Volume V* of the width d*
(Fig. 1) must be sufficient to produce a cleavage fracture in the area 0 < x < x*.
Using the proportionalities

Uel ∝ (γ ⋅ Rp)2 ; V* ∝ δ2, d* ∝ δ ; x* ∝ δ (18)

one finds with the general relation (2) in criterion ii) and (13),

const
m

Jc ≅Γ⋅
2

   for    Γ > σc*/Rp (19)
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By using (2), the analogous proportionality can be written in terms of CTOD, i.e.

constc =Γ⋅δ 2    for   Γ > σc*/Rp (20)

For Γ < σc*/Rp no cleavage occurs.

4.2. Ductile Tearing

The J or CTOD- values at or near initiation of ductile tearing are denoted in the fol-
lowing by Jit and δit, respectively. They represent near initiation parameters such as J0.2,
J0.2/Bl , JIc , etc., or the corresponding CTOD-values, respectively. Jit and δit are size inde-
pendent only if the size requirements corresponding to [17] are met, and if the crack-tip
constraint of the test specimen is as high as in the standard test specimens, i.e. deeply
cracked bend or CT specimens. Otherwise they are constraint-dependent. This effect is
estimated in the following.

The CTOD δ at crack initiation can be assumed to be proportional to the plastic fail-
ure strain εpf in the fracture process zone,

δit  ∝ εpf (21)

εpf is known to be constraint-dependent [18]. Based on the failure hypothesis of Gil-
lemot [19], which states that ductile failure occurs when the plastic energy density Up
reaches a certain critical value Upf, we simply assume that the product of the true (loga-
rithmic) failure strain and σy max = γ ⋅ Rp is constant at crack initiation, i.e.

pfpfp UR =ε+⋅⋅γ )1ln( (22)

The logarithmic strain is used because εpf is in general not small enough to be linearized.
According to [20] Upf can be roughly obtained from a uniaxial tensile test as the area under
the true stress-true strain diagram in the necking area, which is approximately

Z
Z

U f
pf −

⋅σ
≅

1
(23)

where σf = (Rp + Rm) / 2 denotes the flow stress and Z the standard reduction of area of a
uniaxial tensile test. With (22), (23), and Γ ≅  γ, equation (21) leads to

const

ZR
Z

p

f

it =

−












−⋅Γ⋅
⋅σ

δ

1
)1(

exp

(24)

Using (2) in (24) delivers the analogous proportionality in terms of J:

const

ZR
Z

m

J

p

f

it =













−











−⋅Γ⋅

⋅σ
⋅ 1

)1(
exp

(25)



 An Engineering Concept to Account for Crack-Tip Constraints 619

5. EXAMPLE

For edge-cracked beams under bending (Fig. 2), the constraints are known to depend
on the crack-length [7, 9, 20, 21]. For this reason this system is used to check the validity
of Γ as a constraint parameter. Under FSY the following relation was analytically ob-
tained in [22]:

CR

p

c
c

m
⋅

η⋅
=

4
(26)

Herein, cCR = rCR / b is the non-dimensional distance between the crack-tip and the
center of rotation, and η the well known eta-factor that relates J to plastic energy. cp de-
notes the plastic constraint factor that appears in the plastic limit load as

4

2bRc
M pp

p
⋅⋅

= (27)

The values of these parameters are taken from the literature (Fig. 3). For the consid-
ered system the parameters m according to (26) and β as defined in (15), calculated from
the T-stress given in [8] at the plastic limit load given in (27), are shown in Fig. 4, as well
as the Γ resulting therefrom by means of (14) – (16).
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W

Fig. 2. Edge-cracked beam under a bending moment M
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Fig. 3. Factors appearing in eq. (26), as functions of a/W (cp from [20], η from [21]; cCR

represents the trend extracted from [20] and [23].)
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Fig. 4. m, β (Beta) and Γ (Gamma) for an edge cracked bend specimen
as a function of crack length
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Fig. 5. Ratios of apparent fracture toughness to the corresponding values at a/W = 0.5
as a functions of non-dimensional crack length.

Γ inserted in (19) and (24), or (20) and (25), respectively, gives the prediction of the
constraint effect on the apparent fracture resistance in terms of J or δ. Fig. 5 shows the ef-
fect of crack length on the appar-
ent fracture toughness. These
predictions are compared in Fig.
6 and 7 with experimental frac-
ture toughness data reported in
literature. Comparison of cleav-
age data reported in [7] with the
Jc - curve in Fig. 5 exhibits a
similar agreement. Regarding the
typical scatter in the experimental
data, the agreement between pre-
dicted and experimental data is
satisfactory.
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Fig. 6. Comparison of Jit predicted by (20)
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(Z + W from [20], H,R,P from [9]).
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Fig. 7. Comparison of δit predicted values with experimental δit
(Z + W from [21], H,R,P from [9]).

6. DISCUSSION AND CONCLUSIONS

Actually, since crack-tip constraints are a feature of the local elastic-plastic stress-
field, there is no simple way of quantifying them without a detailed local stress analysis.
Simplifications like the one suggested in the present paper are always trade-offs with
accuracy. The presented approach is an attempt to reduce the required modeling and
computational effort to an engineering level. A key point to make this possible is the as-
sumption that the non-dimensional stress peak γ or its approximation Γ, respectively, is a
linear combination of the parameters m and T. Qualitatively this assumption seems to be
reasonable. Besides its relative simplicity, the main advantage of the proposed parameter
Γ is its ability to describe effects of IPC as well as OPC by closed-form relations that
could be derived by simple analytical models.

There are other examples where the effect of constraints can be estimated by similar
simple procedures as the one shown above, e.g. the thickness effect on fracture tough-
ness. For general cases, however, Γ needs to be determined numerically based on (14) –
(16), which means that T, J and CTOD as well as the plastic limit load has to be calcu-
lated. Anyway, determination of these parameters does not require a detailed local model
as to evaluate Q, and the actual constitutional law can be replaced by a simple perfectly
plastic one.

However, further comparisons with experimental and theoretical data are necessary to
assess the accuracy and consistency of the presented formulas. The factors cm and cβ,
which are chosen here just on the basis of some crude theoretical considerations of SSY,
might be optimized by fitting experimental results.
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TEHNIČKI KONCEPT OBJAŠNJENJA
NAPREZANJA VRHOVA PRSLINA

H. J. Schindler

Jedna od glavnih prednosti tehničke mehanike loma je to što korisnik ne mora da se detaljno
bavi lokalnim oblastima napona i dilatacije. Umesto toga, lokalno stanje opterećenja i ponašanje
loma okarakterisani su globalnim parametrima poput J i K i njihovim kritičnim vrednostima.
Nažalost, prenosivost ovih parametara ograničena je na slične uslove u vezi sa vezama vrhova
prslina. Medjutim, da bi se posledice nejednakih veza uzele u obzir u proceduri procene prsline,
mora se izvršiti elastično-plastična analiza oblasti vrha prsline. To zahteva računski napor koji
obično prevazilazi mogućnosti tehničke analize. Stoga su potrebne pojednostavljeni postupci.
Obećavajuca mogućnost se predlaže u ovom radu, gde se uvodi novi parametar veza I. On ima dve
glavne prednosti: prvo, do njega se može doći lakše nego do Q-parametra koji se obično koristi, i
drugo, on je povezan sa parametrima žilavosti loma putem jednačina sa zatvorenom formom.


