Vol.3, No 13, 2003 pp. 559-572
UDC 539.421:539.422:537.226.86:531.64
POTENTIAL ENERGY STATE DURING CRACK
PROPAGATION IN DISCRETE MODEL OF MATERIAL
Dragan B. Jovanović
Faculty of Mechanical Engineering, University of Niš, Beogradska 14,
18000 Niš
E-mail: jdragan@masfak.masfak.ni.ac.yu
The theory of fracture mechanics has two main approaches to the problem
of crack propagation: the continuum mechanics, and the atomic approach.
They are presented in classical literature of fracture mechanics listed
in [3], [4], [5], [9], [10], [11], [15], [18] and [19]. Expecting that
duality of approaches will be over passed by integrative theory in the
future, this paper deals with the atomic approach of cracks inside a discrete
model of material (atomic lattice). Solids may be represented as
systems of discrete masses linked by interacting forces, interatomic forces
or simple bonds. Not only mechanical loads are involved in crack growth,
but also chemical, thermo-mechanical, electro-mechanical, acoustic and
other physical phenomena are also involved. Ability of a discrete model
to explain crack healing, slow subcritical crack growth, sound generation
during crack propagation, effects of chemical processes at the tip of the
crack, nonlinearity of stress, strain and energy distribution in the crack
tip region, influence of temperature on crack propagation and gives great
advantage to procedures based on model of discrete masses (atomic lattice).
Two intrinsic interatomic force functions are used to represent mechanical
interaction between the neighboring atoms (discrete masses) in lattice.
Released potential energy, as a result of crack propagation through the
lattice, by breaking interatomic bonds is presented. One- and two-dimensional
models of lattice and relations for total potential energy of selected
models of lattice are presented.
Key words: crack, mathematical form of localized energetic
structure, discrete model of material, atomic lattice, functions of interatomic
forces, potential energy of atomic bond, total potential energy of lattice,
activation energy, strain energy surfaces.
STANJE POTENCIJALNE ENERGIJE
U TOKU NAPREDOVANJA PRSLINE
U DISKRETNOM MODELU MATERIJALA
Teorija mehanike loma ima dva osnovna pristupa problemu napredovanja prsline:
- mehanika kontinuuma i
- atomistički pristup.
Oni su prikazani u klasičnoj literaturi mehanike loma [3], [4], [5],
[9], [10], [11], [15], [18], [19]. Očekujući da će dualnost ovih pristupa
biti prevaziđena integrativnom teorijom mehanike loma u budućnosti, ovaj
rad se bavi atomističkim stanovištem. Atomistički pristup razmatra prsline
unutar diskretnog modela materijala (atomska mreža). Čvrsta tela se mogu
prikazati kao sistemi diskretnih masa povezanih silama uzajamnog dejstva,
međuatomskim silama ili jednostavno (vezama). Nisu samo mehanička opterećenja
uključena u rast prsline, već takođe hemijske, termo-mehaničke,elektro-mehaničke,
zvučne i druge fizičke pojave. Sposobnost diskretnog modela da objasni
zarastanje prsline, spori podkritični rast prsline, stvaranje zvuka u toku
napredovanja prsline, uticaje hemijskih procesa na vrh prsline, nelinearnost
rasporeda napona, deformacija i energije u oblasti vrha prsline, uticaj
temperature na napredovanje prsline, daje veliku prednost postupcima zasnovanim
na modelu diskretnih masa (atomska mreža).
Dve svojstvene funkcije međuatomskih sila su korišćene da prekažu mehaničku
interakciju između susednih atoma (diskretnih masa) u mreži. Prikazana
je oslobođena potencijalna energija kidanjem međuatomskih veza, kao posledica
napredovanja prsline kroz mrežu. Prikazani su jedno dimenzionalan i dvodimenzionalan
model mreže i relacije za totalnu potencijalnu energiju izabranih modela
mreže.
Ključne reči: prslina, matematička forma lokalizovane energetske
strukture, diskretni model materijala, atomska mreža, funkcije međuatomskih
sila, potencijalna energija atomske veze, totalna potencijalna energija
mreže, energija aktiviranja, površine energije deformacije.