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Abstract. The recent theory of elastic directed curves is used to derive explicit expression
for the set of the conservation law. Using Euclidean group of transformation, the
equivalence between conservation law and Euclidean invariance is demonstrated.
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1. INTRODUCTION

The definition of a rod as a curve with a triad of director leads to a complete
description of the strain in a rod, as shown by Ericksen and Truesdell [1]. They presented
a modern generalised version of the work of E. and F. Cosserat [2] and developed non-
linear theories of strain for directed curves and surfaces, i.e. curves and surfaces at each
point of which a triad of non-coplanar director vectors is defined.

The general theory of [3] can be considered as a generalisation of the statical non-
linear theory of elastic directed curves presented by Cohen [4] who obtained the
equilibrium equations, boundary conditions and constitutive relations by postulating
principles of virtual work and of material frame indifference.

A non-linear dynamical theory of elastic directed curves was developed by Whitman
and DeSilva [3], which can be regarded as an extension of Cohen's results. He postulated
a Hamilton's principle, conservations of mass and invariance of the action density
function under rigid body variations. These three postulates yield a complete dynamical
theory of directed curves, including equations of motion, boundary conditions, and
constutive equations. We then consider alternate forms of the general equations, namely
the tensor and so-called anhonolomic forms. Finally, the above theory is reduced to the
case of a Cosserat curve, i.e. a curve with three rigid directors.

In this paper we formulate Noether's theorem for the dynamical, non-linear theory of
elastic directed curves and the appropriate general conservation law. Then, using
Euclidean group of transformations, the equivalence between conservation law and
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Euclidean invariance is demonstrated. Finally, it was shown that one of obtained integrals
(analogon Eshelby's energy-momentum tensor) has a physical meaning of the energy
release rate.

2. NOETHER'S THEOREM

Let ξ = ξ(ξα) ⊂ Rα , α = 0,1,...,n, be the independent and F = F(Fi) ⊂ Ri, mi ,...,2,1= ,
dependent vector variables, which describe the behaviour of material system under
consideration, and L is the action density, defined and twice continuously differentiable
in Ri .

To develop a dynamical theory of directed curves, we modify the action principle
given by Toupin [6] for three-dimensional elastic directed media. We define the action A
to be the functional

∫ ∫ ∫ ξ=ρ=
t c R

dFLdtdstsLA )(),( ,  ),( dxF =           (2.1)

We can define a special form of Noether's theorem, which is used here to derive the
conservation laws [5].

Theorem. Suppose that F satisfies Euler-Lagrange equations, then L is infinitesimally
invariant of F with respect to the family of transformations if, and only if,

0},{)},({ , =+α+
ξ∂
∂ α

αα QmLmLF          (2.2)

where the abbreviated notation suggested by Ericksen:

332211321321 )},,(),,,{(},{ babababbbaaaYX ++==
is used.

The proof of this theorem can be found in [5].

3. A DYNAMICAL THEORY OF ELASTIC DIRECTED CURVES

The starting point of the study is the theory of elastic directed curves by A. B.
Whitman and C. N. DeSilva [3].

A directed curve is defined as a curve imbedded in a Euclidean three-space with a
non-coplanar triad of deformable vectors called directors associated with each point of
the curve.  Any deformed configuration c of a directed curve at some time t is described
by the functions:

3,2,1; ),(; ),( =α== αα tsts ddrr         (3.1)

where r locates a point on c with  respect  to  a  fixed curvilinear coordinate system xi

with metric g, dα  are  the  deformed  directors, and s is the arc length along c.
We assume the existence of an undeformed reference configuration C at t = 0 such

that
00 )(;)( =αα= == tt SS dDrR          (3.2)



 Conservation Laws in the Dynamics of Cossera Curves - Application to the Fracture Mechanics 555

where R locates a point on C, Dα are the undeformed directors, and S is the arc length
along C. In order to complete the description of a continuous deformation of C into c, we
must specify, in addition to (2.1) and (2.2), the mapping:

),( tSss =  and its inverse )(s,tSS = .         (3.3)

We define the velocity v of points on the curve and the director velocities wα by

ααα ==== gddwgxrv i
i

i ; 

To indicate differentiation of a tensor quantity F with respect to arc lengths s and S,
we adopt the notations

S
FtSF

S
FtsF

∂
∂≡

∂
∂≡ ),(ˆ; ),(ˆ

Various component forms of these arc derivations can be defined. For example of
vector and a second order tensor with components Fi and Fij respectively.

The basic field equations for directed curves are [3]

αααα ωρ=ρ+Φ−µ′ρ=ρ+τ′ iiiiiii hvf ,          (3.4)

where ρ - mass density, iτ′ - stress vector ; αµi - corresponding to directed deformations;
v - velocity of points on the curve - director velocities.

We now assume that the action density can be written as the difference between strain
and kinetic energy parts

),,( FFLKL ∇ξ=−ε=          (3.5)

where ε is the strain energy density, and K is the kinetic energy density which we take in
the form
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such that
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The function ρo is the mass density of the reference configuration C, and the "stretch"
dSds /=λ  is analogous  to the Jacobian in 3-D continuum mechanics.

It may by verified that

ααβαα =ωβρ−=
αα

ρ=Φ
α′

ρλ=µ

−=ρ−=′=τ

iiii

iii
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 (3.8)

and the laws (3.2) are equivalent to the Euler-Lagrange equations.
Then, from relations (2.2), together with (3.8) and analogous divergence theorem, it

follows that

∫ ∫∫ =+α++α+ 0},{),},({)},({ 0
0 dsmQdsLmTdsLmP

dt
d

s (3.9)
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where

],[],,[],,[,,, , 0 α
α

αα ρ=µτ==== hfQTPPPdLPxLP      (3.91)
m = p − ∇F α

4. INVARIANCE AND CONSERVATION

The equivalence of Euclidean invariance of the action density and certain
conservative laws is demonstrated in this section. Following Toupin [6], we postulate the
invariance of the action density function as

),,(),,( ∗∗∗ ∇ξ=∇ξ FFLFFL         (4.1)

under the class of Euclid displacements transformation:
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where Ω is an arbitrary constant, orthogonal, antisymmetric matrix and C, D and C0 are
arbitrary constants.

Conservation laws. We postulate that the numbers of independent constants in transfor-
mation (4.2) determine the number of independent conservation laws.

The case when,
D ≠ 0

∫ ∫=τ+⋅ρ
C C

s
si dsP

dt
dfds 2

1          (4.3)

Ω ≠ 0

∫∫ =µ+τΩ++Ωρ α
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1)()(         (4.4)
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where we have defined an energy function E by

LdPxPE ⋅ρ−+= α
α .         (4.6)

Equations (4.3)-(4.5) express the balance laws of linear momentum, director
momentum and energy. Equation (4.5) demonstrates that the rate of change of energy of
any deforming segment c of the directed curve is balanced by the rate of working of the
body forces f, hα along c and the rate of working of the τ,µα at the ends of c.

The reduced forms of equations (4.3) and (4.4) for the static theory of directed curves
were recorded by Cohen [4].
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Now we consider the case when C ≠ 0. Under these conditions we obtain the J-
integral type of relation

0},{}),,{(},{ =∇+⋅∇−−∇ ∫∫∫
CCC

dsFQdssFTLdsFP
dt
d         (4.7)

Discusion

Clasical elastostatics. In this case the x and dα are independent of time, and action
density L is not dependent of the x and dα ;  thus P and dα Pα vanish. The reduced forms
of equations (4.3) and (4.4) for the statics theory of directed curves were recorded by
Cohen [4].

The expression (4.7) reduces to
2
1

2
1 }),{()( s

s
s
s FTWdxWB ∇−=∇µ−∇τ−= α

α          (4.8)

which is analogous to the well known to Eshelby's energy-momentum tensor [7].

5. THE RELATION BETWEEN J INTEGRAL AND G

Denoting J to be conservation integral Eq. (4.7), takes the form

dsFP
dt
ddxWBJ

C

s
s ∫ ∇+∇µ−∇τ−== α
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1          (5.1)

This result can also be obtained by differentiating the relation for the total energy with
respect to s.

In this case the rate of change of energy at any deforming segment C at the director
curve is:

ds
dEG

∗
=         (5.2)

On the other hand, the total energy is
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Differiating (5.3) with respect to s, and applied of the analogue divergence theorem
becomes

dsFP
dt
dFTds
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respectively,
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From (5.2) and (5.5) we can conclude, that the value of J integral is identical equal to
the rate of change at energy of any deformating segment c of the directed curve, i.e.

)()( aGsJ =
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ZAKONI ODRŽANJA U DINAMICI COSSERA KRIVIH
- PRIMENA KOD MEHANIKE LOMA

Mirko Vukobrat

U ovom radu je formulisana teorema E. Noether za teoriju polja i dat opšti oblik zakona
konzervacije za isto – elastične direktorske krive. Potom koristeći Eduklidovu grupu transformacija
pokazuje se ekvivalentnost između zakona održanja i istih. Na kraju se jednom od dobijenih zakona
održanja (Eshelby – Energy moment tensor) može fizički interpretirati kao brzina oslobođene
energije duž lučne koordinate s.

Ključne reči: zakoni konzervacije, dinamika, Euklidova grupa transformacija.


