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Abstract. In this paper it is considered that the displacement of a cantilever beam is
the superposition of the contribution of the second mode and the prescribed harmonic
base motion. The equation of motion is one weakly nonlinear and is solved by a
combination of variational and averaging method. The results obtained here can be
used in several experimental nonlinear identification techniques.

1. INTRODUCTION

Several experimental nonlinear identification techniques have been presented in the
literature. These techniques are based on a least-squares curve fit for time-domain data,
which is linearly related to the unknown coefficients. They have the advantages of
requiring little a priori knowledge of the system and requiring less time and effort for
data acquisition than the sine well method used for the frequency-domain techniques. The
frequency domain techniques avoid the problems associated with differentiation and
observability of small terms but require considerably more theoretical effort.

In [1] is applied a time-domain technique and two frequency-domain techniques to
the second mode of a cantilever beam. The frequency-domain techniques include a
backbone curve-fitting technique based on the describing function method and on
amplitude and frequency sweep technique. But on the other hand, the restoring-force-
surface method cannot be used to determine the equation of motion. Several approaches
require simultaneous measurement of position, velocity and acceleration or measuring the
position using a fiber optic sensor and differentiating it to get the velocity and
acceleration

Finally, we present the results of numerical integration using a Runge-Kutta routine
and compare them with the analytical results: the agreement is very good.
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2. PROBLEM FORMULATION

In [1] the equation of motion is determined by applying the assume modes method.
We consider that the Lagrangian for a cantilever beam is described by:
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where L is Lagrangian of the system, m is mass per unit length of the beam, w is
transverse displacement of the beam, E is Young's modulus, I is moment of inertia, s is
arc length, t is time.

Assuming that the displacement w(s,t) is the superposition of the contribution of the
second mode and the prescribed motion, the displacement to be written as:

)()()(),( 2 txtustsw b+φ= (2)

where φ2(s) is the shape of the second mode, u(t) is amplitude of the motion and xb is the
prescribed motion. φ2(s) is normalized, so that
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If ω is the frequency of this mode, then
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Substituting Eq.(2) into (1), we obtain:
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where ε is a small parameter and
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The equation of motion can now be written as

Qumlumluuuumlxmuml b =αε+ω++βε+ξ+ 3222 )( (7)

where the generalized force Q, accounting for viscous damping, can be written

ucQ −= (8)

In [1] is considered a harmonic base motion and is described it by

tax bb Ω
Ω
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where ab is the input acceleration and Ω is the driving frequency. For the case of primary
resonance, we define a detuning parameter such that:

εσ+ω=Ω 22 (10)
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Substituting Eq. (8-10) into (7) and dividing by ml gives

tauuuuuuuuu b Ωηε+εµ−εα−+εβ−εσ=Ω+ cos22)( 3222 (11)
where
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3. AN APPROXIMATE THEORY APPLICATION

Consider the following equation:

),,,(2 uuutfuu Ωε=Ω+ (13)

where f is a nonlinear function of u , u  and u , periodic of tΩ  with period 2π which
may be expanded in a Fourier series; parameter ε is assumed to be small, i.e. 0 < ε << 1.

According to [2,3], we can construct the following iteration formula:
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where λ(τ,t) is called a general Lagrange multiplier, which can be identified optimally via
variational theory, nu~  is considered as a restricted variation, i.e. 0~ )( =δ k

nu , k = 0,1,2, and
' = ∂/∂τ. The function λ(τ,t) which extremizes the functional
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can be readily identified:
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As a result, we obtain the following iteration formula, named correction functional:
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In this method the problems are initially approximated with possible unknowns and so
far do not depend on small parameters. The method reveals that the approximate solution
obtained by the proposed method converge rapidly.

For ε = 0, Eq.(13) has the solution ψ= cos)( atx , where 0=a , Ω=ψ . For 0≠ε ,
we try a solution of the form:

)(0)(cos)( 2
0 ε+ε+ψ= tvatu (18)

which is called the approximation of the second order, v(t) is supposed to be periodic
function of period 2π in both Ωt and ψ. However, the amplitude and the total phase of the
first harmonic are supposed to satisfy the differential equations with separable variables
("slowly varying") [4]:
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Eq. (191) and (193) will be used calculating the functions a(t) and θ(t) after the
functions A(a,θ) and B(a,θ) have been found.

We first try to determine the functions v(t), A(a,θ), B(a,θ) so that Eq. (13) be satisfied
to within an error of the second order in ε  will be systematically omitted in the
following. By differentiating Eq. (18) twice with respect t, we obtain:
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Next, we deduce from (19) that
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Introducing these expressions, as well as (19) into (20) and (21) yields:
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On the other hand, by taking into consideration (18), (23) and (24) it follows that:
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Finally, by substituting (18), (24) and (25) into (17), we obtain for n=0:
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in what follows, we should propose that u1(t) = u0(t) in Eq. (26). In this case it is clear that
the sequence un(t) is constant and therefore, the solution of Eq. (13) can be obtained by only
two iterations step due to the fact that the Lagrange multiplier can be exactly identified. The
coefficient of ε/Ω in Eq.(26), would have to vanish and can be  written as follows:
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In order to ensure no secular terms appear in (27), resonance must be avoided and
thus, the coefficients of tsin(Ωt + θ) and tcos(Ωt + θ)  must vanish. The functions A and
B will be determined from these conditions and the function v(t) will be determined from
Eq.(27).

In our problem, we have:

tauuuuuuuuuutf b Ωη+µ−α−+β−σ=Ω cos22),(),,,( 322 (28)

Substituting (18), (23) and (24) into (28), after several manipulations, we obtain:
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Now, substituting (29) into (27), we obtain:
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The functions A and B are determined from the equations:
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The parameters a(t) and θ(t) are to be calculated by solving equations (9) and thus:
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Taking into account that ε is a small parameter and by applying averaging method,
Eq. (35) and (36) can be written in the form:
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with the solutions:
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where a0 and θ0 are constants.
From (30), (39) and (40), we obtain:
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From (18) we obtain the approximation of the second order of Eq.(13):
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On the other hand, fixed points of Eq. (35) and (36) are given by:

Ωµ−=θη aab sin (43)

323

8
3

4
1

2
1cos aaaab α+Ωβ−σ−=θη (44)

Squaring and adding Eq. (43) and (44) gives:
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Collecting data first for response amplitude a as a function of input amplitude ab with
driving frequency Ω held constant and then for a as a function of Ω with ab held constant,
allows a least-squares curve fit to be used to determine the coefficients µ, σ, α, β and η
by comparing experimental force - and frequency - response curves with those predicted
by Eq. (45).

The phase plane of this problem is plotted in Fig. 1 for the equation (11) and in Fig. 2
for the equation (42) for the following parameters: Ω = 26, μ = 0.3, η = 0.5, σ = 2,
α = 0.4, β = 0.2, ε = 1/20, ab = 1, a0 = 0.1, θ0 = 0.
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Fig. 1. Phase plane for eq. 11 Fig. 2. Phase plane for eq. 42
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O ODZIVU DRUGOG MODA KONZOLNE GREDE
V. Marinca, B. Marinca, N. Herisanu

U ovom radu proučen je doprinos  drugog moda pomeranju konzolne grede u odnosu na
osnovnmo harmonijsko oscilovanje. Jednačina kretanja je slabo nelinearna i rešena prilogom
varijacionoj i metodi usrednjenja. Rezultati ovde dobijeni bi mogli biti upotrebljeni za
eksperimentalne nelinearne identifikacione tehnike.


