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Abstract. Three-dimensional model of the plate, with the elliptical crack contour is
used for analyzing of stress state and deformation energy, in this paper. It is assumed
that tensile forces are applied at the direction perpendicular on the crack plane, and
that stress state is two-dimensional in general (in remote regions). Three-dimensional
stress state at the vicinity of crack front zone is evaluated by using of finite element
method. Evidently, variation of stress tensor components is related to the coordinate
perpendicular to the middle plane of the plate, and σz is different from zero at the
region nearby around the crack.
In this paper obtained results on stress and deformation (strain) energy distribution are
analyzed, and conclusions about the three-dimensional stress state and three-
dimensional energy distribution in the region close to crack front line are obtained.

Key words: crack, stress state, specific deformation (strain) energy, reconstruction of
deformation (strain) energy surfaces.

1. INTRODUCTION, FRAMEWORK

The conventional plate theories assume that the stress variations in terms of the
thickness coordinate are known as a priori [14], [26], and [27]. For plane stress state, the
transverse normal stress component σz is assumed to be zero throughout the plate, and in-
plane stresses σx, σy and τxy are independent on thickness coordinate [1], [4], [15]. These
assumptions are valid under very limited circumstances, and in the very narrow
framework [22], [23], [27], and [28].

Three-dimensional model of the plate, with the crack of elliptical contour is accepted
for the analysis. It is assumed that axial tensile forces are applied in direction
perpendicular to the crack plane, and that general stress state in plate is two-dimensional.
Three-dimensional stress state at the crack tip zone by using of finite element method is
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evaluated. Evidently varying of stress tensor components is related to the coordinate
perpendicular to the middle plane of the plate and σz is different from zero in the region
around the crack.

Diagrams of stress components, in sections x=0, y=0 and z=0 are presented. Strain
energy for directions y = 0, z = 0,±1,±2,±3,±4,±5 mm and z = 0, x = 0, 2.3, 3.35, 4.5,
6.15, 7.03, 9.3, 10,76, 14.4, 20.93, 25, 30.32, 35, 40, 45, 48,5 mm is calculated. Surface
of the strain energy for points in the middle plane and plane perpendicular to it, in front
of the crack tip, by using relations for strain energy, best fitting curve, best fitting surface,
and iteration procedure is reconstructed. Variation of stress components and distribution
of strain energy three-dimensionally related in the region close to crack is obtained.
However, at the most part of the plate is "undisturbed state" where strain energy has
constant value [4].

According to the Griffith theory it is assumed that cracks exist or can be initiated in a
solid body when tensile stresses overpass some limiting (critical) value, or when the
strain energy release rate is higher then the rate of the energy gained by forming of crack
new free surfaces [25]. Crack is considered as a elliptical hole, where one of semi axes is
close to zero, and ellipse is degenerating to a straight slit [9], [25].

Square plate 100×100 mm, and 10 mm thick, loaded with tensile forces in y direction
is taken as an example for analyzing stress state and deformation energy (strain energy)
state. Elliptical hole at the middle of the plate is taken as model of Griffith crack [25].
Elliptical crack presented on Fig. 1 has semi-major axis a = 5 mm and semi-minor axis
b = 0.5 mm. As material of the plate is taken polyester Palatal P-6 with Young's elasticity
modulus E = 4460 N/mm2 and Poisson's ratio ν =0.38.

Cartesian coordinates x, y and z with origin in the middle of the plate are used. So,
coordinate x is varying between −50 mm and +50 mm, y is varying between −50 mm and
+50 mm, and z is varying from −5 mm and up to +5 mm. Remote load is regularly
distributed on the edge side of the plate and it has value q = 1 N/mm2. Direction of
loading force is in y - direction and it is perpendicular to the semi-major axis of the
elliptical crack. Scheme of the plate with crack and loading is presented on Fig. 1.

crack  tip  front

Fig. 1. Scheme of the plate with crack Fig. 2. Three-dimensional mesh
and loading of finite elements
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2. STRESS DISTRIBUTION

Analytical methods like Williams polynomial method, and Westergaard's method are
determining the stress components like two-dimensional stress state is valid even close to
the crack tip, what is in disagreement with physical reality. It is possible to obtain
analytical solution for stress state in a cracked plate by using Mushelishvili method [1],
[5], [6], [7], [8], [9], and [10], but it is valid only in plates where two-dimensional stress
state is omnipresent. Experimental experience shows evidently three-dimensional stress
state on the crack tip [17], [18], [19], [20].

For determination of the stress tensor components in the vicinity of an elliptical crack
the finite element method is used. Three-dimensional mesh of finite elements is
generated, as it is presented on Fig. 2. It is generated manually in this way to simulate
hyperbolic-elliptical coordinate system. Standard isoparametric, eight node brick
elements are employed, precluding any erroneous to the imposition of an incorrect
singularity [15].

By taking selected sections and directions it is determined distribution of normal and
shear stresses for x, y and z-axes in the selected points of the plate. Stress distribution for
plane z = 0 or the middle plane of the plate is determined.

Under given loading conditions, crack has tendency to increase semi-minor axis b,
and to decrease semi-major axis a, of elliptical contour, or by common words to increase
opening.

Stress components σx, σy, σz, τxy, τyz, and τzx, at middle plane z = 0 of the plate, in the
region close to crack, are presented in Figures 3, 4, 5, 6, 7, and 8.

Stress components σx, σy, σz, τxy, τyz, and τzx, at plane section y = 0 of the plate, in the
region close to crack, are presented in Figures 9, 10, 11, 12, 13, and 14. Previous two
section planes are perpendicular to each other. Hence, stress components have equal
values in direction y = 0, z = 0.

Fig. 3. Distribution of σx stress Fig. 4. Distribution of σy stress
at middle plane z = 0 of the plate. at middle plane z = 0 of the plate.
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Fig. 5. Distribution of σz stress Fig. 6. Distribution of τxy stress
at middle plane z = 0 of the plate. at middle plane z = 0 of the plate.

Fig. 7. Distribution of τyz stress Fig. 8. Distribution of τzx stress
at middle plane z = 0 of the plate. at middle plane z = 0 of the plate.

Fig. 9. Distribution of σx stress Fig. 10. Distribution of σy stress
at plane section y = 0 of the plate. at plane section y = 0 of the plate.
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Fig. 11. Distribution of σz stress Fig. 12. Distribution of τxy stress
at plane section y = 0 of the plate. at plane section y = 0 of the plate.

Fig. 13. Distribution of τyz stress Fig. 14. Distribution of τzx stress
at plane section y = 0 of the plate. at plane section y = 0 of the plate.

Diagrams of the stress components σx, σy, σz, τxy, τyz, and τzx, for y = 0 and z = 0 are
presented in Fig. 15, for y = 0 and z = 2 mm are presented in Fig. 16, for y = 0 and
z = 4 mm are presented in Fig. 17, for x = 0 and z = 0 are presented in Fig. 18, for
x = 4.5 mm and z = 0 are presented in Fig. 19, and for x = 7.028 mm and z = 0 are
presented in Fig. 20. It is visible on Fig. 15, 16, and 17 that the highest values of σx, σy,
σz and τxy are on the crack tip front, and that τxy changes sign on about one plate
thickness from the crack tip. For direction x = 0 and z = 0 in Fig. 18 is visible that σx, and
σz have sign minus in the region close to the crack edge up to 0.7 of the plate thickness
for σx, and 0.5 of the plate thickness for σz . Stress component σy has increasing value
from zero at the edge of crack up to value 1 N/mm2 on distance 2.5 plate thickness from
the crack edge. Stresses σx, σz and τxy are changing sign at the region in front of crack, as
it is visible in Fig. 19 and Fig. 20.
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Fig. 15. Distribution of the stress Fig. 16. Distribution of the stress
components for y = 0 and z = 0. components for y = 0 and z = 2 mm.

Fig. 17. Distribution of the stress Fig. 18. Distribution of the stress components
components for y = 0 and z = 4mm. for x = 0 and z = 0.

Fig. 19. Distribution of the stress Fig. 20. Distribution of the stress components
for x = 4.5 mm and z = 0. for x = 7.028 mm and z = 0.
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3. DISTRIBUTION OF THE DEFORMATION (STRAIN) ENERGY

When the elastic body is loaded, the work done by the applied forces is stored as a
form of potential energy, which is frequently referred to as "strain energy" or, "elastic
energy", or "deformation energy". If the body contains a crack, and that crack grows by a
small amount under the applied loading conditions, the deformation energy stored in the
body will be changed.

Specific deformation (strain) energy is calculated by using data from diagrams of
stress tensor components presented on previous figures (see Fig.15 - 20), where
interpolation and smoothing of stress function is previously done. For calculation of
strain energy in selected characteristic directions FORTRAN program named "Defen" is
created. Expression (1) well known in theory of elasticity [4], [11], [15], [27] is used.

)])(1( 2)( 2)[(
E2

1  A 2
zy

2
zx

2
yxzyzxyx

2
z

2
y

2
xdef τ+τ+τν+⋅+σσ+σσ+σσν⋅−σ+σ+σ

⋅
=′ (1)

Diagram of specific deformation energy (energy of elastic deformation per unit of
volume) for direction y = 0, z = 0 is presented in Fig. 21. Diagrams of specific deformation
energy for directions x = 0, z = 0, and z = 0, x = 2.3, 4.5, 10.76 are presented in Fig. 22, 23,
24, 25 respectively.

Fig. 21.Distribution of specific deformation Fig. 22. Distribution of specific deformation
(strain) energy for direction y = 0, z = 0.  (strain) energy for direction x = 0, z = 0.

Fig. 23.Distribution of specific deformation Fig. 24. Distribution of specific deformation
energy for direction z = 0, x = 2.3 mm.  energy for direction z = 0, x = 4.5 mm.
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Fig. 25.Diagram of specific deformation energy Fig. 26.Reconstructed surface of the
for direction z = 0, x = 10.76 mm. specific deformation (strain) energy

F = F(x,z) for plane y = 0.

By using data from diagrams of the specific deformation energy for various directions
and by gridding, and smoothing the surfaces which are presenting distribution of specific
deformation energy in planes z = 0, F = F(x,y), and y = 0, F = F(x,z) are reconstructed.
Surface of the specific deformation energy F = F(x,z) for plane 0y =  is presented in Fig. 26.

Fig. 27.Diagram of specific deformation energy Fig. 28.Reconstructed surface of the
at the crack tip front specific deformation (strain) energy
x = 4.5 mm, y = 0. F = F(x,z) for plane z = 0.

It is visible that peaks of the deformation energy are on the crack front. Specific
deformation energy is A'def = 2230⋅10−3 J/mm3 at the distances higher than one plate
thickness, and it is distance of undisturbed area. Diagram of specific deformation energy
at the crack tip front 0y,mm5.4x ==  is presented in Fig. 27. The higher value of
deformation energy is close to the plate, surfaces z = ±5 mm, and it is
A'def = 17261.2⋅10−3 J/mm3 for z = ±4 mm. From that values deformation energy is
decreasing by parabolic function, and when we are going to the middle of the plate, it has
value A'def = 14517.6⋅10−3 J/mm3 for z = 0. It is visible on Fig. 28 that distribution of
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strain energy resulted with high value of energy in front of crack tip, where the peak of
energy stored in material exists. It is visible on Fig. 26 as well as on Fig. 27 that specific
deformation (strain) energy is increasing from middle plane 0z =  to front and back free
surface of the plate, and that peaks of energy are close to free surfaces off the plate. This
is observed only in region close to the crack front, up to distance of about 0.25 of plate
thickness, from the crack front. This results are consistent with results of Sih G. C., Lee
Y. D., [23] and their comment: "The inability of the elasticity theory to account for
surface effects were not recognized and frequently left unexplained with the impression
that they could be attributed to numerical inaccuracies". (Compare Fig. 26 and 27 with
Fig. 11 in reference [23]). "The volume energy in Fig. 11 [23] at z ≈ 0.233 cm became
even higher than at the mid-plane z = 0. This is contrary to physical intuition where the
largest volume energy density should occur inside the plate, not near the surface. The
success of this investigation lies not only in completing the three-dimensional finite
element analysis but even more important is in understanding the near boundary
behaviour of the elasticity solution that may not agree with physical intuition because it
neglects the interaction of surface and volume effects [23]".

Values of deformation energy normalized to general level of deformation energy
A'def = 2230⋅10−3 J/mm3 and with normalized coordinates z  are given in Tab. 1.

Tab. 1. Specific deformation energy and normalized specific deformation energy
at the crack tip front x = 4.5 mm, y = 0

z Specific def. energy
A'def [10−3 J/mm3]

Normalized specific
def. energy def'A

0.8 17261.2 7.74
0.6 15446.2 6.93
0.4 14801   6.64
0.2 14558.1 6.53
0.0 14517.6 6.51

Surface of the specific deformation energy F = F(x,y) for plane z = 0 is presented on
Fig. 28. It is visible in Fig. 28 that redistribution of deformation energy resulted with high
energy on crack front, where is peak of the "mountain of energy". On the other side there
is valley, with energy level lower than general (or global) energy level 1Adef = . The
bottom of the valley has 185.0Adef = .

Depression of energy level is up to three plate thickness from the crack edge in
direction of y-axis, as it is presented by diagram in Fig. 22.

It is clear that each material has (limiting or critical) energy level that observed
material could tolerate without braking of inter-atomic or inter-molecular bonds. That
means, crack will not propagate if critical energy level is not overpassed. By using
experimental procedure it is possible to determine critical energy level (CEL) for every
material, and for all typical general stress states [19], [20].

Value of CEL can be used as criteria in determination of strength of materials and
constructions to the process of crack development. Critical level of specific deformation
energy is also important inherent characteristic of material.
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4. COEFFICIENT OF ENERGY REDISTRIBUTION

If we establish ratio of peak value of specific deformation energy on the crack front
against general value of specific deformation (strain) energy, this value could be named "
coefficient of energy increasing":

)G(def

)P(def
I A

A
C

′
′

= (2)

where:
A'def(P) - is peak value of specific deformation energy, and A'def(G) - is general value of

specific deformation energy.
On the other side at the region of valley, energy is decreasing under the general level.

There, relation between bottom value of energy and general energy level could be named
" coefficient of energy decreasing":
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where: A'def(B) - is bottom value of specific deformation energy.
Relation between coefficient of energy increasing CI , and coefficient of energy

decreasing CD gives third coefficient which could be named coefficient of energy
redistribution CR .
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 It is clear that coefficient of energy redistribution depends on crack geometry
(relations between crack length, thickness of the plate, radius of the curvature on the
crack tip, shape of the crack etc.), and it depends also on general stress state at the
surrounding of the crack. Higher value of coefficient of energy redistribution means that
concentration of energy at the crack tip is higher.

By using simple experiment can be determined coefficients CI , CD and CR for
different crack parameters as useful tool for engineers.

5. LOCAL EFFECT OF THE CRACK

Analysis in this work shows that influence of the crack on the general stress state and
energy state is local, and in the presented example local effect takes place up to one plate
thickness from the crack tip. In other direction perpendicularly to crack length decreasing
of energy happens up to three plate-thickness from the crack. On Fig. 15, 16, 17, 18, 19,
20, is visible that changing of stresses takes effect only in region of crack. Evidently that
phenomenon of crack results at local changing of stress state, and local distribution of the
specific deformation energy, at the region close to the crack.

General stress state in plate can be described by using well-known analytical solutions
for plane stress state, generalized plane stress state and bending of plates [4], [27].
Meanwhile, at the region of crack exist three-dimensional stress state and three-
dimensional distribution of specific deformation energy.
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It would be the next step to introduce function of local three-dimensional stress
redistribution DS , and function of local three-dimensional specific deformation energy
redistribution DE .

Local function depends on three coordinates:

)z,y,x(EE DD = (5)

So, distribution of specific deformation energy is:

A'def = DE(x,y,z)⋅A'def R (6)

Where A'def R - is general value of specific deformation energy, when crack does not
exist.

Function DE(x,y,z) is undimensional:

R
D

 def

def
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and it gives local distribution of deformation energy.

6. CONCLUSIONS

This paper presents stress state at the surrounding of an elliptical hole in elastic plate.
From the diagrams of the stress components is visible that stress state is three-
dimensional close to the crack. Normal stress σz is different than zero on distance up to
three quarters of the plate thickness from the crack front at the direction of crack
propagation and up to half of the plate thickness at the direction perpendicular to crack. It
is also visible that stresses σx, σy, σz are depending on coordinate z up to one plate
thickness from the crack front at the crack direction. Specific deformation energy is
calculated at second step, and at the third step surfaces which are presenting distribution
of the specific deformation energy are reconstructed. From these diagrams and surfaces
which are presenting specific deformation energy is visible that crack is initiating
redistribution of the deformation energy at the surrounding. Deformation energy is
increasing up to one plate thickness in front of the crack tip at the direction of the crack,
and decreasing up to three plate-thickness at direction perpendicular to the middle of the
crack. Reconstructed specific energy surfaces are presenting visually, how crack
influence deformation energy distribution at the plane stressed plate. Regions of the plate
further from the crack remind undisturbed and deformation energy is clearly constant.
Also, stress state on distance further than one plate thickness is evidently two-
dimensional, and stresses are independent of thickness coordinate. This gives us
opportunity to draw conclusion that influence of the crack is evidently local and the rest
of the plate stays "undisturbed". This analysis is suggesting that analytical solutions
should be locally three-dimensional.

Introduction of three-dimensional function that is presenting disturbing influence of
the crack to stress state and distribution of deformation energy of the plate, could be
appropriate direction to look forward.
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STANJE NAPONA I RASPORED ENERGIJE DEFORMACIJE
(DILATACIJE) ISPRED VRHA PRSLINE

U PLOČI IZLOŽENOJ ZATEZANJU
Dragan B. Jovanović

U ovom radu je korišćen trodimenzionalni model ploče sa eliptičnom prslinom za analizu
stanja napona i energije deformacije. Pretpostavljeno je dejstvo zatežućih sila u pravcu upravnom
na ravan prsline i ravno stanje napona kao opšte (u području udaljenom od prsline).
trodimenzionalno stanje napona Ustanovljeno je korišćenjem metode konačnih elemenata da u
oblasti prsline vlada trodimenzionalno stanje napona. Promena komponenti tenzora napona je u
funkciji koordinate upravne na srednju ravan ploče i σz je različito od nule u oblasti neposredno
oko prsline.

U radu su analizirani dobijeni rezultati o rasporedu napona i rasporedu deformacione energije
i dobijeni su zaključci o trodimenzionalnom stanju napona i trodimenzionalnom rasporedu energije
u neposrednoj okolini linije fronta prsline.

Ključne reči: prslina, stanje napona, specifična energija deformacije,rekonstrukcija površina energije


