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Abstract. The paper presents some recent developments in modelling and numerical
analysis of piezoelectric material systems and controlled smart structures based on a
general purpose finite element software with the possibilities of static and dynamic
analyses and simulation. Design and simulation of controlled smart structure is also
presented, using a state-space model of a structure obtained through the finite element
analysis as a starting point for the controller design. For the purpose of the control
design for the vibration suppression discrete-time control design tools were used, such
as optimal LQ controller incorporated in a tracking system. The application of
mentioned methods was verified through the example of actively controlled vibrations
of the clamped beam.

Key words: piezoelectric smart structures, finite element analysis, optimal LQ control,
tracking system.

1. INTRODUCTION

An increasing interest in the possibilities of active control of structures has given rise
to new achievements in this field of research in many branches of engineering over the
past few years. In comparison with passive structures, smart structures (or active
structures, or structronic systems as they are referred to in different literature) offer a
great variety of possibilities for the structural behavior control under changing
environment conditions in the sense of adjusting or adapting the structure parameters and
behavior to new conditions. From this point of view the term adaptive structure is also
used to denote the possibility of altering the structural response in the presence of
disturbances or changed working conditions. The ability of the structure to change its
response in accordance with the changed environment conditions comes from the
presence of active materials integrated with the structure. Such active materials (acting as
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sensor and/or actuators) in connection with the control system enable automatic
adaptation of the structure to changing environment conditions. An important role among
active materials belongs to piezoelectric materials (such as thin wafers, fibers or
piezoelectric rods) used as actuators and sensors integrated in a structure providing thus
the adaptability of the smart structure, while not affecting significantly its passive
behavior. Piezoelectric sensing and control with distributed piezoelectric transducers
have been intensively studied, e.g. [6], [16], [19]. Application of piezoelectric materials
in active structural control requires appropriate simulation and design tools. One of such
tools [5] has been developed by the authors (Gabbert et al.) and it represents a general
purpose finite element based simulation software for piezoelectric smart structures. The
software includes an extensive library of coupled finite elements which cover 1D, 2D and
3D continua as well as multilayered composite shell continua based on a general
approach. The finite element code includes a substructure technique which provides the
possibility of separating mechanical and piezoelectric structures. It also contains a data
interface for the communication between finite element analysis tools and controller
design tools such as Matlab/Simulink. Theoretical background of the finite element
software tool COSAR will be briefly presented in the following chapters.

2. BASIC EQUATIONS OF PIEZOELASTICITY

The coupled electromechanical behavior of a polarizable (but not magnetizable)
piezoelectric smart material can be described with adequate accuracy with linearized
constitutive equations. These linear equations can be derived from the energy expression
[18] in a quadratic form of the primary field variables: mechanical strain εεεε and electric
field E, on the basis of the assumption that the temperature distribution θ is a priori
known or can be calculated independently of the electromechanical fields. The potential
function [14], [18] can be written in the following form:

θ+θ−−−= πEζεκEEeEεCεεEε TTTTT
2
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2
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Dependent variables: mechanical stress σσσσ and electric displacement D are derived
from (1) by partial differentiation as:
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or in the scalar form [11]:
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Equations (2) can be written in the matrix notation as:
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using the following block-matrices:
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where: σσσσT=[σ11 σ22 σ33 σ12 σ23 σ31] is the stress vector, C(6×6) is the symmetric elasticity
matrix, εεεεT=[εεεε11 εεεε22 εεεε33 εεεε12 εεεε23 εεεε31] is the strain vector, e(6×3) is the piezoelectric matrix,
ET=[E1 E2 E3] is the electric field vector, ζζζζ is the vector of thermal stress coefficients, θ
represents the temperature variation of the body with respect to the initial temperature,
DT=[D1 D2 D3] is the vector of electric displacements, κκκκ(3×3) is the symmetric dielectric
matrix and ππππ is the vector of pyroelectric coefficients.

The linear constitutive equations are an approximation of the real non-linear behavior,
which is quite accurate in low electric field applications and gives sufficiently accurate
results in most design processes of engineering smart structures.

The constitutive equations (4) together with the mechanical and electric balance
equations as well as the mechanical and electric boundary conditions represent a unique
set of equations for the coupled electromechanical problem. Equations of motion written
in the matrix notation and the charge equation of electrostatics resulting from Maxwell’s
equations [17] are respectively:

0DL0upσL ==ρ−+ φ
TT ,u       in V (6)

where [ ]321
T ppp=p  is the body force vector, uT=[u1 u2 u3] is the vector of

mechanical displacements described in Cartesian coordinates system xT=[x1 x2 x3], ρ is
the mass density and Lu and Lφ are differentiation matrices:
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Now the balance equations can be represented in a compact form:

0qρbΨL =−+T (8)
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The linear strain-displacement relation εεεε = Luu and the relation E = −Lφφ between the
electric field vector E and electric potential φ, can be written together in the form:
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Taking (10) into account, the constitutive relation (4) can be written in the form:

ΘJLqΨ −= (11)
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Now, the balance equation (8) can be written as:

0qρbΘLJLqL =−+− TT , (12)
or in the extended form:
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The mechanical stress and electric charge boundary conditions are:
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where t  is the prescribed traction vector, Q  is the surface charge, and n is a matrix of
direction cosines which transforms the stresses and electric displacements to the
coordinate system normal to the surface. Over bar denotes prescribed values at a
particular part of the surface. The boundary conditions of mechanical displacements and
electric potential are:

0qq =−    on Oq. (15)

In terms of the weighted residual method, a coupled electromechanical functional is
provided by multiplying the balance equation (13) with the vector ][ TT δφδ=δ uq
containing the virtual displacement δu and virtual electric potential δφ, respectively, and
integrating over the entire domain. As a result we obtain:
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or in the scalar form [11]:
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It is assumed that the virtual quantities are admissible, and consequently, fulfill the
boundary conditions (15). Using partial integration and the Gaussian integral theorem,
the following form of the functional can be derived from (16):

0τqΘqLbqJLqqLuρqχ =δ+δ+δ+δ−δ−=δ ∫∫∫∫∫ dOdVdVdVdV
tcccc OVVVV

TTTTT )()( (18)

Formulation (18) represents a suitable basis for the development of any type of finite
element for coupled electromechanical problems.
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3. FINITE ELEMENT ANALYSIS OF PIEZOMECHANICAL PROBLEMS

In each finite element the unknown field variables, mechanical displacements ui and
electric potential φ are approximated by shape functions )()( xN u

k  and )()( xNk
φ  in the

following way:
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where uik and φk represent time-dependent unknown nodal values of the element
approximate function. In the matrix form these equations can be written as
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In the previous equation N(u) and N(φ) are the mechanical and electric shape function
matrices, respectively, and the vector qe contains the mechanical and electric element
nodal degrees of freedom ue and φe respectively. Application of the differentiation matrix
L to q results in
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Introducing the approximate function appearing in (20) into (17) and taking into
account (22) as well as Lδq=LNδqe=Bδqe we get:

0)(T =−+δ eeeeee FqKqMq . (24)

If damping is taken into account, the equation of a coupled electromechanical
problem in the semi-discrete form becomes:

eeeeeee FqKqRqM =++ (25)

where the mass matrix Me, generalized stiffness matrix Ke and generalized force
vector Fe of an element (e) are:
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4. PLACEMENT OF ACTUATORS AND SENSORS

Placement of actuators and sensors plays an important role in the smart structures
design procedure. The effectiveness of the overall smart structure depends to a great
extent on the number and distribution of active materials included in a structure as well as
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on the designed controller. On the other hand the actuator/sensor locations affect the
controllability and the observability of a controlled structure and have a major influence
on the efficiency of the control system and the required control effort to satisfy a given
design criterion. The placement of actuators/sensors is one of the main problems in the
design of adaptive structures. In the distributed control of continua (e.g. plate and shell
structures with collocated piezoelectric wafers) the estimation of an optimal actuator and
sensor shape as well as their placement are a very complex problem which has not yet
been fully solved [11].

In the preliminary steps of the smart structure design it is assumed that the
specification of the structure itself, including the objective of the controlled behavior,
external disturbances, frequency range etc. is already known. The number and positions
of the required actuators and sensors are roughly estimated in the first approach. This can
be done on the basis of the controllability and observability indices only, where the
influence of the stiffness and the mass changes due to the active materials as well as the
controller influence are omitted. Based on the results of an eigenvalue analysis at each
structural point the modal strains and consequently the modal electric voltage can be
calculated which in principal results in the controllability index µk(xP) of the kth mode at
the position xP. The best positions xP to control the first r eigenmodes are those positions
where the overall controllability index

∏
=

µ=µ
r

k
PkkP w

1
)()( xx (27)

has the largest value.

5. DEVELOPMENT OF THE STATE-SPACE MODEL AND DATA EXCHANGE

For the purpose of the overall smart structure design and simulation, besides the
active sensor/actuator elements, an appropriate model of the controller is required. The
procedure of the control law design, testing and verification in the framework of the finite
element analysis represents in general a complex process which requires some additional
tools to support design process. MATLAB/SIMULINK is a convenient environment for the
controller design and simulation with many available tools for this purpose and for that
reason it was reasonable to create an interface which would provide data exchange
between the finite element analysis code and the controller design tool. In this case this
data exchange should be bi-directional since the data from the finite element model such
as the mass matrix, the stiffness matrix, the damping matrix as well as sensor and
actuator positions are required to design the controller and on the other hand the
controller matrix (or subroutines calculating the controller parameters) is needed in the
finite element package to simulate the controlled structural behavior [11]. For the
exchange of data and information between the finite element package COSAR [5] and
MATLAB/SIMULINK, a general data exchange interface has been designed and
implemented in the finite element software. The communication concept between the
finite element software COSAR and MATLAB/SIMULINK is shown in Fig. 1.
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 Finite element system 
COSAR

 Controller Design Tool
Matlab/Simulink 

 FE /C ontrol 
Interface

Modal State Space Matrices 
A, B, C, D, E, F

Controller Matrix
R

Eigenvalue Analysis

Transient Analysis

 Controller Design

Fig. 1. Data exchange between the finite element software COSAR and MATLAB/SIMULINK

Controller design for a flexible mechanical structure represents in general case a
multiple input - multiple output (MIMO) problem, where the application of large-scale
finite element models is not suitable due to the high order of the resulting state-space
model. Therefore, an appropriate model reduction technique is required to reduce the
number of the finite element equations. One of the best-known model reduction
techniques is the modal truncation. This technique has been combined with the
investigations of the dominant behavior of different modes. The modal truncation seems
to be best suited for the controller design of structures based on a finite element
discretization, since flexible structures possess a low-pass characteristic, which allows
neglecting high-frequency dynamics. This technique based on the solution of the linear
eigenvalue problem

0φMK =λ− kk )( (28)

results in the (n×r) modal matrix ][ 21 rφφφΦ =  and the (r×r) spectral matrix
ΛΛΛΛ = diag(λk), where ΦΦΦΦ is ortho-normalized with ΦΦΦΦTMΦΦΦΦ = I = diag(1) and ΦΦΦΦTKΦΦΦΦ = ΛΛΛΛ.
Consequently, inserting the modal coordinates Φxq =  into (25) results in a truncated
system of r differential equations which can be written as

)()( TT tt uBΦfEΦΛxxΔx +=++ . (29)

Usually, in spite of the system reduction the classical controller design methods in the
frequency domain cannot be applied. Therefore, the controller description is given in the
state-space form. It is assumed that the equation of motion is reduced to the first r
eigenvectors, which results in  (29). Defining the state vector as:
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the modal reduced model (29) can be transformed into the modal form of the state-space
equation:
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Together with the modal form of the measurement equation

)()( tt fFuDCzy ++= , (32)
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which can also be established based on the data of the finite element model, all required
information to design an appropriate controller are prepared. The matrices A, B, C, D, E,
F are transferred to MATLAB/SIMULINK via the data interface (Fig. 1) to design the
controller and to test it through numerical experiments. The controller can also be directly
implemented on a dSPACE system, which enables designer to work in a hardware-in-
the-loop configuration in order to test and modify designed controller on the bases of real
experiments. But before performing such experiments the structural behavior can also be
tested on a virtual computer model of the structure, which is based on the original finite
element model. Therefore the controller can be transformed back into the finite element
software via the data interface, where in LTI systems the designed controller matrix L is
used to generate the actuator signal as

)()( tt Lyu −= . (33)

The controller can also be directly implemented in the finite element software as C-
code subroutine resulting from MATLAB/SIMULINK.

6. CONTROLLER DESIGN

The controller design starts with the continuous state-space model:

duxy
duxx
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(34)

the state matrices of which are obtained through the finite element analysis and modal
reduction described previously. The general form of the plant model (34) assumes the
presence of disturbance d in the state and output equations. Hence, the controller is
designed introducing additional dynamics [20] to compensate for the presence of
disturbances and to provide tracking of the reference input with prescribed frequency in
order to suppress vibrations. Additional dynamics is formed based on the assumption that
the reference input to be tracked and disturbance that acts upon the structure can be
described by the rational discrete transfer function. Sine function fulfils this condition
and it is usually used as a disturbance model.

For discrete-time controller design it is necessary to obtain discrete-time state space
model of the plant-structure. It is obtained from (34) by discretization with the
appropriate sampling time T. Discrete-time model is in the form:
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Additional dynamics is determined in the state-space form on the basis of disturbance
and/or reference input poles λi. Based on the coefficients of the polynomial:
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obtained by mapping the pole locations into the z-plane, the additional dynamics,
described by ΦΦΦΦa and ΓΓΓΓa matrices:
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is formed.
Discrete-time design model (ΦΦΦΦd, ΓΓΓΓd) is formed as a cascade combination of additional

dynamics (ΦΦΦΦa, ΓΓΓΓa) and discrete-time plant model (ΦΦΦΦ, ΓΓΓΓ) obtained for specified sampling
time T:

xd[k+1] = ΦΦΦΦd xd[k] + ΓΓΓΓd u[k] (39)
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Feedback gain matrix L of the optimal LQ regulator is calculated on the basis of
design model (39) in such a way that the feedback law u[k]= −Lxd[k] minimizes the
performance index:
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subject to the constraint equation (39) where Q and R are symmetric, positive-definite
matrices. Feedback gain matrix L is afterwards partitioned into submatrices L1 and L2
corresponding to the plant and additional dynamics, respectively. Partitioned feedback
gain matrix is implemented in the control system as shown in Fig.2.
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A/D

C
y

Fig. 2. Optimal LQ tracking system

7. VIBRATION SUPPRESION OF THE ACTIVLY CONTROLLED CLAMPED BEAM

Numerical experiment was performed on the test example of the clamped beam.
Applying the procedure described above, optimal LQ tracking system was designed for
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the purpose of the clamped beam vibration suppression in the presence of sine-type
disturbance forces acting on the corner points of the free beam end (Fig. 3). State space
model for the controller design was obtained through the finite element analysis.

Clamped beam shown in Fig. 3 represents active plate structure controlled by four
piezoelectric patch actuators attached to the beam, two on the top and two on the bottom
of the plate. Geometry of the plant as well as the plate, actuator and sensor properties are
listed in Fig. 3. At first step the plant was represented in the form of a finite element
model with a mesh of 235 passive and 80 active Semiloof shell elements [2], [7], [8]. On
the basis of this mesh the eigenfrequencies and eigenmodes were calculated. Considered
frequencies which are of interest for bending mode study cases are f1=17.2Hz,
f2=108.6Hz, f4=302.9Hz and f6=606.1Hz.
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300

30
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10

4 x actuators

Sensor

F(t)F(t)

235 passive Semiloof shell elements
80 active Semiloof shell elements

Material:
Beam: Actuator/sensor:
E = 2.00⋅105 N/mm2 E11 = E22=3.77⋅104 N/mm2 d31 = 2.1⋅10−7 mm/V
ν = 0.3 G12 = 1.3⋅104 N/mm2 κ33 = 3.36⋅10−9 F/m
ρ = 7.86⋅10−9 Ns2/mm4 ν = 0.38 t = 0.4 mm (thickness)

t = 2.0 mm (thickness)

Fig. 3. Actively controlled clamped beam

Plate model was modally reduced and transformed into the state-space model using
the finite element software [5]. Via data exchange interface the model in the form (34)
was exported into MATLAB/SIMULINK as a software environment for controller design
and testing. Appropriate state-space matrices in the model (34) are:
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Exciting forces F(t) = Asin(ωit) = Asin(2πfit), A = 0.01, exerted at the corner points of
the beam end were chosen according to the eigenfrequencies of interest, considering such
disturbance as the worst case due to the possibility of the resonance. Since disturbance is
a sine function, its s-plane poles are complex conjugate numbers λ1,2=±jωi, where ωi=2πfi
and fi are the eigenfrequencies of bending modes.

Following the procedure for the controller design described in the previous section,
after implementing the controller, the following simulation results were obtained.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Fig. 4 Fig. 5

0 1 2 3 4 5 6
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Fig. 6 Fig. 7



428 U. GABBERT, T. NESTOROVIĆ TRAJKOV, H. KÖPPE

Simulation results in Fig. 4–7 were obtained for different combinations of the reference
input and disturbance frequencies. For the purpose of discrete-time control system design
sampling interval T=0.0001sec was chosen. Each of the diagrams represents comparison of
the beam end oscillations without control and with control switched 0.5 sec after the
beginning of the simulation. The vibration suppression is obvious.

Results in Fig. 4 were obtained for the case when the excitation forces have the frequency
corresponding to the first bending mode eigenfrequency, i.e. F=0.01sin(2π⋅17.2t). Reference
input in this case is the sine signal of the same frequency. Weighting matrices Q and R for
the optimal LQ controller design were chosen in the following way: Q=10−7⋅I10×10, R= I4×4.

For the disturbance force F=0.01sin(2π⋅108.6t), corresponding to the second bending
mode eigenfrequency f2=108.6 Hz, simulation results are shown in Fig. 5. In this case in
order to achieve better vibration suppression as well as the reduction of the oscillation
frequency, the reference input was specified to be F=0.01sin(2π⋅17.2t). Weighting matrices
were chosen in the following way: Q=10−5⋅I10×10, R= I4×4.

Fig. 6 represents results for the excitation forces F=0.01sin(2π⋅302.9t) and reference
input F=0.01sin(2π⋅17.2t). Weighting matrices are: Q=10−2⋅I10×10, R= I4×4.

The result for the forces F=0.01sin(2π⋅606.1t) and reference input F=0.01sin(2π⋅17.2t)
are shown in Fig. 7. Weighting matrices were chosen in the same way as in the previous
case, i.e. Q=10−2⋅I10×10, R= I4×4.

In each of the tested cases the controller performed very good stability margins (upper
gain margin greater than 30dB, lower gain margin less than –30dB and phase margin
128°), which means that the conroller can be considered robust from the stability margins
point of view. The vibration suppression was achieved with relatively small control effort
in terms of low voltage control signals, which represents a real base for the cotroller
implementation.

The values of the weighting matrices Q and R affect the settling time of the closed-
loop system as well as the oscillation magnitudes during the transient response.  With
adoped values of the weighting matrices a trade-off between the settling time and the
trancient magnitudes was achieved in order to obtain satisfying results and avoid pick
magnitudes at the instant when the controller is switched on. Thus presented choice of the
weighting matrices represents one possible solution. Of course, with any unknown sine-
excitation within the first four eigenfrequencies, the steady-state response of the closed-
loop control system would be the same as in shown results for the same weighting
matrices used with different excitation frequencies. Since the choice of weighting
matrices affects the transient behavior after swithcing the controller on, pick magnitudes
can be avoided with the controller switched on from the very beginning of the simulation.
In this way the same controller can face different excitation frequencies. The simulations
also showed that with appropriate choice of the reference input in combination with
appropriate excitation force, tracking of desired vibration frequencies and magnitudes
could also be achieved.

8. CONCLUSION

The procedure for modelling and simulation of smart structures based on a general
purpose finite element software and numerical analysis of piezoelectric material systems
has been presented in the paper. Discrete-time LQ optimal controller in combination with
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additional dynamics tracking system has been proposed for the purpose of smart
structure's vibration suppression. Applied techniques turned out to be very convenient
from the simulation point of view, both in the sense of modal analysis and controller
design and simulation procedure, since the proposed finite element software enables data
exchange between its moduls and controller design tools like MATLAB/SIMULINK.
Simulation verification of applied methods through the test-example of a clamped beam
showed successful vibration suppression of the beam end in the presence of the sine-type
excitation forces with frequencies corresponding to eigenfrequencies of the structure of
interest. Further steps in development of this field involve ongoing experimental
validations using dSpace system together with the studies of advanced test cases (like
plate and shell structures) with special emphasis on the research on the possibilities of
practical applications, such as vibration control of the car roof, computer tomography etc.
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MODELIRANJE, UPRAVLJANJE I SIMULACIJA AKTIVNIH
KONSTRUKCIJA SA PIEZOELEKTRIČNIM ELEMENTIMA

PRIMENOM METODA KONAČNIH ELEMENATA I
OPTIMALNOG LQ UPRAVLJANJA

Ulrich Gabbert, Tamara Nestorović Trajkov, Heinz Köppe

U radu su predstavljena neka aktuelna dostignuća u modeliranju i numeričkoj analizi sistema
sa piezoelektričnim materijalima i aktivnih konstrukcija na osnovu softvera opšte namene za
analizu metodom konačnih elemenata, koji ima mogućnosti za statičku i dinamičku analizu i
simulaciju. Prikazano je projektovanje i simulacija upravljane aktivne strukture, pri čemu je model
objekta u prostoru stanja,  dobijen postupkom analize metodom  konačnih elemenata, korišćen kao
polazna osnova za projektovanje kontrolera. U cilju projektovanja upravljanja za prigušenje
oscilacija korišćen je upravljački aparat u diskretnom domenu – optimalni LQ kontroler u
kombinaciji sa sistemom praćenja. Primena pomenutih metoda verifikovana je na primeru aktivnog
upravljanja oscilacijama konzole.


